doi: 10.3934/amc.2020092

A generic construction of rotation symmetric bent functions

1. 

Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, 430062, China

2. 

Faculty of Mathematics and Statistics, Hubei Engineering University, Xiaogan, 432000, China

* Corresponding author: Nian Li

Received  December 2019 Revised  May 2020 Published  July 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 61702166, 61761166010) and Major Technological Innovation Special Project of Hubei Province (No. 2019ACA144)

Rotation symmetric bent functions are a special class of Boolean functions, and their construction is of theoretical and practical interest. In this paper, we propose a generic construction of rotation symmetric bent functions by modifying the support of a known class of quadratic rotation symmetric bent functions, which generalizes some earlier works. Moreover, many infinite classes of rotation symmetric bent functions with maximal algebraic degree can be easily obtained from our construction.

Citation: Junchao Zhou, Nian Li, Xiangyong Zeng, Yunge Xu. A generic construction of rotation symmetric bent functions. Advances in Mathematics of Communications, doi: 10.3934/amc.2020092
References:
[1]

C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods (eds. Y. Crama and P. L. Hammer), Cambridge, U.K.: Cambridge Univ. Press, (2010), 257–397. Google Scholar

[2]

C. Carlet, G. P. Gao and W. F. Liu, Results on constructions of rotation symmetric bent and semi-bent functions,, in Sequences and Their Applications–SETA 2014, Springer International Publishing, Switzerland, 8865 (2014), 21–33. doi: 10.1007/978-3-319-12325-7_2.  Google Scholar

[3]

C. CarletG. P. Gao and W. F. Liu, A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions, J. Combin. Theory Ser. A, 127 (2014), 161-175.  doi: 10.1016/j.jcta.2014.05.008.  Google Scholar

[4]

C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.  doi: 10.1007/s10623-015-0145-8.  Google Scholar

[5] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Academic Press, San Diego, 2009.   Google Scholar
[6]

J. F. Dillon, Elementary Hadamard Difference Sets, PhD Thesis, University of Maryland, 1974.  Google Scholar

[7]

G. P. GaoT. W. Cusick and W. F. Liu, Families of rotation symmetric functions with useful cryptographic properties, IET Inf. Secur., 8 (2014), 297-302.  doi: 10.1049/iet-ifs.2013.0241.  Google Scholar

[8]

G. P. GaoX. Y. ZhangW. F. Liu and C. Carlet, Constructions of quadratic and cubic rotation symmetric bent functions, IEEE Trans. Inf. Theory, 58 (2012), 4908-4913.  doi: 10.1109/TIT.2012.2193377.  Google Scholar

[9]

T. Helleseth and P. Kumar, Sequences with low correlation, In Handbook of Coding Theory, Handbook of coding North-Holland, Amsterdam, 1 (1998), 1765–1853.  Google Scholar

[10]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands, North-Holland, 1977.  Google Scholar

[11]

J. Pieprzyk and C. X. Qu, Fast Hashing and rotation symmetric functions, J. Univ. Comput. Sci., 5 (1999), 20-31.   Google Scholar

[12]

V. RijmenP. Barreto and D. Filho, Rotation symmetry in algebraically generated cryptographic substitution tables, Inf. Process. Lett., 106 (2008), 246-250.  doi: 10.1016/j.ipl.2007.09.012.  Google Scholar

[13]

O. S. Rothaus, On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[14]

P. Stănică and S. Maitra, Rotation symmetric Boolean Functions-Count and Cryptographic Properties, Discr. Appl. Math., 156 (2008), 1567-1580.  doi: 10.1016/j.dam.2007.04.029.  Google Scholar

[15]

S. H. Su, A new construction of rotation symmetric bent functions with maximal algebraic degree, Adv. Math. Commun., 13 (2019), 253-265.  doi: 10.3934/amc.2019017.  Google Scholar

[16]

S. H. Su and X. H. Tang, Symmetric constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions, IEEE Trans. Inf. Theory, 63 (2017), 4658-4667.  doi: 10.1109/TIT.2016.2621751.  Google Scholar

[17]

X. Y. ZengL. HuW. F. JiangQ. Yue and X. W. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.  Google Scholar

[18]

W. Y. Zhang and G. Y. Han, Construction of rotation symmetric bent functions with maximum algebraic degree, Science China Information Sciences, 61 (2018), 1–3. Google Scholar

[19]

W. Y. ZhangZ. H. Xing and K. Q. Feng, A construction of bent functions with optimal algebraic degree and large symmetric group, Adv. Math. Commun., 14 (2020), 23-33.  doi: 10.3934/amc.2020003.  Google Scholar

show all references

References:
[1]

C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods (eds. Y. Crama and P. L. Hammer), Cambridge, U.K.: Cambridge Univ. Press, (2010), 257–397. Google Scholar

[2]

C. Carlet, G. P. Gao and W. F. Liu, Results on constructions of rotation symmetric bent and semi-bent functions,, in Sequences and Their Applications–SETA 2014, Springer International Publishing, Switzerland, 8865 (2014), 21–33. doi: 10.1007/978-3-319-12325-7_2.  Google Scholar

[3]

C. CarletG. P. Gao and W. F. Liu, A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions, J. Combin. Theory Ser. A, 127 (2014), 161-175.  doi: 10.1016/j.jcta.2014.05.008.  Google Scholar

[4]

C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.  doi: 10.1007/s10623-015-0145-8.  Google Scholar

[5] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Academic Press, San Diego, 2009.   Google Scholar
[6]

J. F. Dillon, Elementary Hadamard Difference Sets, PhD Thesis, University of Maryland, 1974.  Google Scholar

[7]

G. P. GaoT. W. Cusick and W. F. Liu, Families of rotation symmetric functions with useful cryptographic properties, IET Inf. Secur., 8 (2014), 297-302.  doi: 10.1049/iet-ifs.2013.0241.  Google Scholar

[8]

G. P. GaoX. Y. ZhangW. F. Liu and C. Carlet, Constructions of quadratic and cubic rotation symmetric bent functions, IEEE Trans. Inf. Theory, 58 (2012), 4908-4913.  doi: 10.1109/TIT.2012.2193377.  Google Scholar

[9]

T. Helleseth and P. Kumar, Sequences with low correlation, In Handbook of Coding Theory, Handbook of coding North-Holland, Amsterdam, 1 (1998), 1765–1853.  Google Scholar

[10]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands, North-Holland, 1977.  Google Scholar

[11]

J. Pieprzyk and C. X. Qu, Fast Hashing and rotation symmetric functions, J. Univ. Comput. Sci., 5 (1999), 20-31.   Google Scholar

[12]

V. RijmenP. Barreto and D. Filho, Rotation symmetry in algebraically generated cryptographic substitution tables, Inf. Process. Lett., 106 (2008), 246-250.  doi: 10.1016/j.ipl.2007.09.012.  Google Scholar

[13]

O. S. Rothaus, On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[14]

P. Stănică and S. Maitra, Rotation symmetric Boolean Functions-Count and Cryptographic Properties, Discr. Appl. Math., 156 (2008), 1567-1580.  doi: 10.1016/j.dam.2007.04.029.  Google Scholar

[15]

S. H. Su, A new construction of rotation symmetric bent functions with maximal algebraic degree, Adv. Math. Commun., 13 (2019), 253-265.  doi: 10.3934/amc.2019017.  Google Scholar

[16]

S. H. Su and X. H. Tang, Symmetric constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions, IEEE Trans. Inf. Theory, 63 (2017), 4658-4667.  doi: 10.1109/TIT.2016.2621751.  Google Scholar

[17]

X. Y. ZengL. HuW. F. JiangQ. Yue and X. W. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.  Google Scholar

[18]

W. Y. Zhang and G. Y. Han, Construction of rotation symmetric bent functions with maximum algebraic degree, Science China Information Sciences, 61 (2018), 1–3. Google Scholar

[19]

W. Y. ZhangZ. H. Xing and K. Q. Feng, A construction of bent functions with optimal algebraic degree and large symmetric group, Adv. Math. Commun., 14 (2020), 23-33.  doi: 10.3934/amc.2020003.  Google Scholar

[1]

Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017

[2]

Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003

[3]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[4]

Ayça Çeşmelioǧlu, Wilfried Meidl, Alexander Pott. On the dual of (non)-weakly regular bent functions and self-dual bent functions. Advances in Mathematics of Communications, 2013, 7 (4) : 425-440. doi: 10.3934/amc.2013.7.425

[5]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[6]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[7]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[8]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[9]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[10]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[11]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020016

[12]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[13]

Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601

[14]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[15]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[16]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[17]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[18]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

[19]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[20]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (26)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]