
- Previous Article
- AMC Home
- This Issue
-
Next Article
Speeding up regular elliptic curve scalar multiplication without precomputation
Some group-theoretical results on Feistel Networks in a long-key scenario
1. | DISIM, University of L'Aquila, Via Vetoio, 67100 Coppito (AQ), Italy |
2. | Department of Informatics, University of Bergen, Postboks 7803, N-5020 Bergen, Norway |
The study of the trapdoors that can be hidden in a block cipher is and has always been a high-interest topic in symmetric cryptography. In this paper we focus on Feistel-network-like ciphers in a classical long-key scenario and we investigate some conditions which make such a construction immune to the partition-based attack introduced recently by Bannier et al.
References:
[1] |
R. Aragona, M. Calderini, R. Civino, M. Sala and I. Zappatore,
Wave-shaped round functions and primitive groups, Advances in Mathematics of Communications, 13 (2019), 67-88.
doi: 10.3934/amc.2019004. |
[2] |
R. Aragona, M. Calderini, A. Tortora and M. Tota, On the primitivity of PRESENT and other lightweight ciphers, J. Algebra Appl., 17 (2018), 1850115 (16 pages).
doi: 10.1142/S0219498818501153. |
[3] |
R. Aragona, A. Caranti and M. Sala,
The group generated by the round functions of a GOST-like cipher, Ann. Mat. Pura Appl., 196 (2017), 1-17.
doi: 10.1007/s10231-016-0559-6. |
[4] |
R. Aragona, A. Caranti, F. Dalla Volta and M. Sala,
On the group generated by the round functions of translation based ciphers over arbitrary fields, Finite Fields Appl., 25 (2014), 293-305.
doi: 10.1016/j.ffa.2013.10.005. |
[5] |
A. Bannier, N. Bodin and E. Filiol, Partition-Based Trapdoor Ciphers, Cryptology ePrint Archive, Report 2016/493, 2016. |
[6] |
A. Bannier and E. Filiol, Partition-based Trapdoor Ciphers, IntechOpen, London, 2017. |
[7] |
E. Biham and A. Shamir,
Differential cryptanalysis of {DES-like} cryptosystems, Journal of Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563. |
[8] |
A. Bogdanov et al., PRESENT: An ultra-lightweight block cipher, CHES '07, Lecture Notes in Comput. Sci., 4727 (2007), 450–466. |
[9] |
M. Calderini,
A note on some algebraic trapdoors for block ciphers, Advances in Mathematics of Communications, 12 (2018), 515-524.
doi: 10.3934/amc.2018030. |
[10] |
M. Calderini, R. Civino and M. Sala, On properties of translation groups in the affine general linear group with applications to cryptography, preprint, arXiv: math.GR/1702.00581, 2017. |
[11] |
A. Caranti, F. Dalla Volta and M. Sala,
On some block ciphers and imprimitive groups, Appl. Algebra Engrg. Comm. Comput., 20 (2009), 339-350.
doi: 10.1007/s00200-009-0100-x. |
[12] |
A. Caranti, F. Dalla Volta and M. Sala,
An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher, Des. Codes Cryptogr., 52 (2009), 293-301.
doi: 10.1007/s10623-009-9283-1. |
[13] |
D. Coppersmith and E. Grossman,
Generators for certain alternating groups with applications to cryptography, SIAM J. Appl. Math., 29 (1975), 624-627.
doi: 10.1137/0129051. |
[14] |
J. Daemen and V. Rijmen, The design of Rijndael: AES – the Advanced Encryption Standard, Information Security and Cryptography, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04722-4. |
[15] |
Federal information processing standards publication, Data Encryption Standard and Others, National Bureau of Standards, US Department of Commerce, 1977. |
[16] |
E. Goursat,
Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup., 6 (1889), 9-102.
doi: 10.24033/asens.317. |
[17] |
C. Harpes and J. L. Massey, Partitioning cryptanalysis,, Fast Software Encryption, Lecture Notes in Comput. Sci., 1267 (1997), 13–27.
doi: 10.1007/BFb0052331. |
[18] |
Jr. B. S. Kaliski, R. L. Rivest and A. T. Sherman,
Is the Data Encryption Standard a group? (Results of cycling experiments on DES), J. Cryptology, 1 (1988), 3-36.
doi: 10.1007/BF00206323. |
[19] |
K. G. Paterson, Imprimitive permutation groups and trapdoors in iterated block ciphers,, Fast Software Encryption, Lecture Notes in Comput. Sci., 1636 (1999), 201–214.
doi: 10.1007/3-540-48519-8_15. |
[20] |
J. Petrillo,
Goursat's other theorem, The College Mathematics Journal, 40 (2009), 119-124.
|
[21] |
C. E. Shannon,
Communication theory of secrecy systems, Bell System Tech., 28 (1949), 656-715.
doi: 10.1002/j.1538-7305.1949.tb00928.x. |
[22] |
R. Sparr and R. Wernsdorf,
Group theoretic properties of Rijndael-like ciphers, Discrete Appl. Math., 156 (2008), 3139-3149.
doi: 10.1016/j.dam.2007.12.011. |
[23] |
R. Wernsdorf, The round functions of RIJNDAEL generate the alternating group, Fast Software Encryption, Lecture Notes in Comput. Sci., 2365 (2002), 143–148.
doi: 10.1007/3-540-45661-9_11. |
[24] |
R. Wernsdorf, The round functions of SERPENT generate the alternating group, 2000. Available from: http://csrc.nist.gov/archive/aes/round2/comments/20000512-rwernsdorf.pdf. |
[25] |
R. Wernsdorf, The one-round functions of the DES generate the alternating group, Advances in Cryptology-EUROCRYPT '92, Lecture Notes in Comput. Sci., 658 (1993), 99–112.
doi: 10.1007/3-540-47555-9_9. |
show all references
References:
[1] |
R. Aragona, M. Calderini, R. Civino, M. Sala and I. Zappatore,
Wave-shaped round functions and primitive groups, Advances in Mathematics of Communications, 13 (2019), 67-88.
doi: 10.3934/amc.2019004. |
[2] |
R. Aragona, M. Calderini, A. Tortora and M. Tota, On the primitivity of PRESENT and other lightweight ciphers, J. Algebra Appl., 17 (2018), 1850115 (16 pages).
doi: 10.1142/S0219498818501153. |
[3] |
R. Aragona, A. Caranti and M. Sala,
The group generated by the round functions of a GOST-like cipher, Ann. Mat. Pura Appl., 196 (2017), 1-17.
doi: 10.1007/s10231-016-0559-6. |
[4] |
R. Aragona, A. Caranti, F. Dalla Volta and M. Sala,
On the group generated by the round functions of translation based ciphers over arbitrary fields, Finite Fields Appl., 25 (2014), 293-305.
doi: 10.1016/j.ffa.2013.10.005. |
[5] |
A. Bannier, N. Bodin and E. Filiol, Partition-Based Trapdoor Ciphers, Cryptology ePrint Archive, Report 2016/493, 2016. |
[6] |
A. Bannier and E. Filiol, Partition-based Trapdoor Ciphers, IntechOpen, London, 2017. |
[7] |
E. Biham and A. Shamir,
Differential cryptanalysis of {DES-like} cryptosystems, Journal of Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563. |
[8] |
A. Bogdanov et al., PRESENT: An ultra-lightweight block cipher, CHES '07, Lecture Notes in Comput. Sci., 4727 (2007), 450–466. |
[9] |
M. Calderini,
A note on some algebraic trapdoors for block ciphers, Advances in Mathematics of Communications, 12 (2018), 515-524.
doi: 10.3934/amc.2018030. |
[10] |
M. Calderini, R. Civino and M. Sala, On properties of translation groups in the affine general linear group with applications to cryptography, preprint, arXiv: math.GR/1702.00581, 2017. |
[11] |
A. Caranti, F. Dalla Volta and M. Sala,
On some block ciphers and imprimitive groups, Appl. Algebra Engrg. Comm. Comput., 20 (2009), 339-350.
doi: 10.1007/s00200-009-0100-x. |
[12] |
A. Caranti, F. Dalla Volta and M. Sala,
An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher, Des. Codes Cryptogr., 52 (2009), 293-301.
doi: 10.1007/s10623-009-9283-1. |
[13] |
D. Coppersmith and E. Grossman,
Generators for certain alternating groups with applications to cryptography, SIAM J. Appl. Math., 29 (1975), 624-627.
doi: 10.1137/0129051. |
[14] |
J. Daemen and V. Rijmen, The design of Rijndael: AES – the Advanced Encryption Standard, Information Security and Cryptography, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04722-4. |
[15] |
Federal information processing standards publication, Data Encryption Standard and Others, National Bureau of Standards, US Department of Commerce, 1977. |
[16] |
E. Goursat,
Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup., 6 (1889), 9-102.
doi: 10.24033/asens.317. |
[17] |
C. Harpes and J. L. Massey, Partitioning cryptanalysis,, Fast Software Encryption, Lecture Notes in Comput. Sci., 1267 (1997), 13–27.
doi: 10.1007/BFb0052331. |
[18] |
Jr. B. S. Kaliski, R. L. Rivest and A. T. Sherman,
Is the Data Encryption Standard a group? (Results of cycling experiments on DES), J. Cryptology, 1 (1988), 3-36.
doi: 10.1007/BF00206323. |
[19] |
K. G. Paterson, Imprimitive permutation groups and trapdoors in iterated block ciphers,, Fast Software Encryption, Lecture Notes in Comput. Sci., 1636 (1999), 201–214.
doi: 10.1007/3-540-48519-8_15. |
[20] |
J. Petrillo,
Goursat's other theorem, The College Mathematics Journal, 40 (2009), 119-124.
|
[21] |
C. E. Shannon,
Communication theory of secrecy systems, Bell System Tech., 28 (1949), 656-715.
doi: 10.1002/j.1538-7305.1949.tb00928.x. |
[22] |
R. Sparr and R. Wernsdorf,
Group theoretic properties of Rijndael-like ciphers, Discrete Appl. Math., 156 (2008), 3139-3149.
doi: 10.1016/j.dam.2007.12.011. |
[23] |
R. Wernsdorf, The round functions of RIJNDAEL generate the alternating group, Fast Software Encryption, Lecture Notes in Comput. Sci., 2365 (2002), 143–148.
doi: 10.1007/3-540-45661-9_11. |
[24] |
R. Wernsdorf, The round functions of SERPENT generate the alternating group, 2000. Available from: http://csrc.nist.gov/archive/aes/round2/comments/20000512-rwernsdorf.pdf. |
[25] |
R. Wernsdorf, The one-round functions of the DES generate the alternating group, Advances in Cryptology-EUROCRYPT '92, Lecture Notes in Comput. Sci., 658 (1993), 99–112.
doi: 10.1007/3-540-47555-9_9. |

[1] |
Riccardo Aragona, Marco Calderini, Roberto Civino, Massimiliano Sala, Ilaria Zappatore. Wave-shaped round functions and primitive groups. Advances in Mathematics of Communications, 2019, 13 (1) : 67-88. doi: 10.3934/amc.2019004 |
[2] |
Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003 |
[3] |
Javier de la Cruz, Ricardo Villanueva-Polanco. Public key cryptography based on twisted dihedral group algebras. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022031 |
[4] |
Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure and Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775 |
[5] |
Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027 |
[6] |
Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977 |
[7] |
Joe Gildea, Abidin Kaya, Adam Michael Roberts, Rhian Taylor, Alexander Tylyshchak. New self-dual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021039 |
[8] |
Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, 2022, 16 (2) : 269-284. doi: 10.3934/amc.2020111 |
[9] |
Xiao-Hong Liu, Wei Wu. Coerciveness of some merit functions over symmetric cones. Journal of Industrial and Management Optimization, 2009, 5 (3) : 603-613. doi: 10.3934/jimo.2009.5.603 |
[10] |
Junchao Zhou, Nian Li, Xiangyong Zeng, Yunge Xu. A generic construction of rotation symmetric bent functions. Advances in Mathematics of Communications, 2021, 15 (4) : 721-736. doi: 10.3934/amc.2020092 |
[11] |
Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453 |
[12] |
Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779 |
[13] |
Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009 |
[14] |
Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017 |
[15] |
Thomas W. Cusick, Younhwan Cheon. The weight recursions for the 2-rotation symmetric quartic Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021011 |
[16] |
SelÇuk Kavut, Seher Tutdere. Highly nonlinear (vectorial) Boolean functions that are symmetric under some permutations. Advances in Mathematics of Communications, 2020, 14 (1) : 127-136. doi: 10.3934/amc.2020010 |
[17] |
Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281 |
[18] |
Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27 |
[19] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[20] |
Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]