doi: 10.3934/amc.2020095

Several new classes of (balanced) Boolean functions with few Walsh transform values

1. 

Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China

2. 

Wuhan Maritime Communication Research Institute, Wuhan 430079, China

* Corresponding author: Nian Li

Received  February 2020 Revised  April 2020 Published  July 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 61702166, 61761166010) and Major Technological Innovation Special Project of Hubei Province (No. 2019ACA144)

Three classes of (balanced) Boolean functions with few Walsh transform values derived from bent functions, Gold functions and the product of linearized polynomials are obtained in this paper. Further, the value distributions of their Walsh transform are also determined by virtue of the property of bent functions, the Walsh transform property of Gold functions and the $ k $-tuple balance property of trace functions respectively.

Citation: Tingting Pang, Nian Li, Li Zhang, Xiangyong Zeng. Several new classes of (balanced) Boolean functions with few Walsh transform values. Advances in Mathematics of Communications, doi: 10.3934/amc.2020095
References:
[1]

N. Boston and G. McGuire, The weight distributions of cyclic codes with two zeros and zeta functions, J. Symbolic Comput., 45 (2010), 723-733.  doi: 10.1016/j.jsc.2010.03.007.  Google Scholar

[2]

C. Carlet, Boolean Functions for Cryptography and Error Correcting Codes, In Y. Crama and P. L. Hammer, editors, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, 2010. Google Scholar

[3]

C. CarletL. E. DanielsenM. G. Parker and P. Solé, Self-dual bent functions, Int. J. Inform. and Coding Theory, 1 (2010), 384-399.  doi: 10.1504/IJICOT.2010.032864.  Google Scholar

[4]

R. S. Coulter, On the evaluation of a class of Weil sums in characteristic 2, New Zealand J. Math., 28 (1999), 171-184.   Google Scholar

[5]

J. F. Dillon, Elementary Hadamard Difference Sets, Ph.D. dissertation, Univ. Maryland, College Park, 1974.  Google Scholar

[6]

H. Dobbertin, One-to-one highly nonlinear power functions on $GF(2^n)$, Appl. Algebra Eng. Commun. Comput., 9 (1998), 139-152.  doi: 10.1007/s002000050099.  Google Scholar

[7]

H. DobbertinP. FelkeT. Helleseth and P. Rosendahl, Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inf. Theory, 52 (2006), 613-627.  doi: 10.1109/TIT.2005.862094.  Google Scholar

[8]

P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, New York: Wiley, 1996. Google Scholar

[9]

T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[10]

T. Helleseth, A note on the cross-correlation function between two binary maximal length linear sequences, Discrete Math., 23 (1978), 301-307.  doi: 10.1016/0012-365X(78)90010-9.  Google Scholar

[11]

T. Helleseth and P. Kumar, Sequences with Low Correlation, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds. New York, Elsevier Science, 1998. Google Scholar

[12]

T. Helleseth and P. Rosendahl, New pairs of $m$-sequences with $4$-level cross-correlation, Finite Fields Appl., 11 (2005), 674-683.  doi: 10.1016/j.ffa.2004.09.001.  Google Scholar

[13]

A. Johansen and T. Helleseth, A family of $m$-sequences with five-valued cross correlation, IEEE Trans. Inf. Theory, 55 (2009), 880-887.  doi: 10.1109/TIT.2008.2009810.  Google Scholar

[14]

A. JohansenT. Helleseth and A. Kholosha, Further results on $m$-sequences with five-valued cross correlation, IEEE Trans. Inf. Theory, 55 (2009), 5792-5802.  doi: 10.1109/TIT.2009.2032854.  Google Scholar

[15]

K. H. Kim, J. H. Choe, D. N. Lee, D. S. Go and S. Mesnager, Solutions of $x^{q^k}+\cdots+x^q+x = a$ in $\mathbb{F}_{2^n}$, arXiv: 1905.10579v1. Google Scholar

[16]

N. G. Leander, Monomial bent functions, IEEE Trans. Inf. Theory, 52 (2006), 738-743.  doi: 10.1109/TIT.2005.862121.  Google Scholar

[17]

N. LiT. HellesethA. Kholosha and X. H. Tang, On the Walsh transform of a class of functions from Niho exponents, IEEE Trans. Inf. Theory, 59 (2013), 4662-4667.  doi: 10.1109/TIT.2013.2252053.  Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, Encycl. Math. Appl., Cambridge University Press, Cambridge, 1997.  Google Scholar

[19]

S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. Inf. Theory, 60 (2014), 4397-4407.  doi: 10.1109/TIT.2014.2320974.  Google Scholar

[20]

Y. Niho., Multi-Valued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences, Ph.D. dissertation, University of Southern California, Los Angeles, 1972. Google Scholar

[21]

O. S. Rothaus, On "Bent" functions, J. Comb. Theory Ser. A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[22]

Z. Q. Sun and L. Hu, Boolean Functions with four-valued Walsh spectra, J. Syst. Sci. Complex., 28 (2015), 743-754.  doi: 10.1007/s11424-014-2224-8.  Google Scholar

[23]

Z. R. TuD. B. ZhengX. Y. Zeng and L. Hu, Boolean functions with two distinct Walsh coefficients, Appl. Algebra Eng. Commun. Comput., 22 (2011), 359-366.  doi: 10.1007/s00200-011-0155-3.  Google Scholar

[24]

Y. H. Xie, L. Hu, W. F. Jiang and X. Y. Zeng, A class of Boolean functions with four-valued Walsh spectra,, Asia-pacific Conference on Communications. IEEE Press, (2009), 880–883. doi: 10.1109/APCC.2009.5375462.  Google Scholar

[25]

G. K. XuX. W. Cao and S. D. Xu, Several new classes of Boolean functions with few Walsh transform values, Appl. Algebra Eng. Commun. Comput., 28 (2017), 155-176.  doi: 10.1007/s00200-016-0298-3.  Google Scholar

[26]

Y. L. Zheng and X. M. Zhang, On plateaued functions, IEEE Trans. Inf. Theory, 47 (2001), 1215-1223.  doi: 10.1109/18.915690.  Google Scholar

show all references

References:
[1]

N. Boston and G. McGuire, The weight distributions of cyclic codes with two zeros and zeta functions, J. Symbolic Comput., 45 (2010), 723-733.  doi: 10.1016/j.jsc.2010.03.007.  Google Scholar

[2]

C. Carlet, Boolean Functions for Cryptography and Error Correcting Codes, In Y. Crama and P. L. Hammer, editors, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, 2010. Google Scholar

[3]

C. CarletL. E. DanielsenM. G. Parker and P. Solé, Self-dual bent functions, Int. J. Inform. and Coding Theory, 1 (2010), 384-399.  doi: 10.1504/IJICOT.2010.032864.  Google Scholar

[4]

R. S. Coulter, On the evaluation of a class of Weil sums in characteristic 2, New Zealand J. Math., 28 (1999), 171-184.   Google Scholar

[5]

J. F. Dillon, Elementary Hadamard Difference Sets, Ph.D. dissertation, Univ. Maryland, College Park, 1974.  Google Scholar

[6]

H. Dobbertin, One-to-one highly nonlinear power functions on $GF(2^n)$, Appl. Algebra Eng. Commun. Comput., 9 (1998), 139-152.  doi: 10.1007/s002000050099.  Google Scholar

[7]

H. DobbertinP. FelkeT. Helleseth and P. Rosendahl, Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inf. Theory, 52 (2006), 613-627.  doi: 10.1109/TIT.2005.862094.  Google Scholar

[8]

P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, New York: Wiley, 1996. Google Scholar

[9]

T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[10]

T. Helleseth, A note on the cross-correlation function between two binary maximal length linear sequences, Discrete Math., 23 (1978), 301-307.  doi: 10.1016/0012-365X(78)90010-9.  Google Scholar

[11]

T. Helleseth and P. Kumar, Sequences with Low Correlation, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds. New York, Elsevier Science, 1998. Google Scholar

[12]

T. Helleseth and P. Rosendahl, New pairs of $m$-sequences with $4$-level cross-correlation, Finite Fields Appl., 11 (2005), 674-683.  doi: 10.1016/j.ffa.2004.09.001.  Google Scholar

[13]

A. Johansen and T. Helleseth, A family of $m$-sequences with five-valued cross correlation, IEEE Trans. Inf. Theory, 55 (2009), 880-887.  doi: 10.1109/TIT.2008.2009810.  Google Scholar

[14]

A. JohansenT. Helleseth and A. Kholosha, Further results on $m$-sequences with five-valued cross correlation, IEEE Trans. Inf. Theory, 55 (2009), 5792-5802.  doi: 10.1109/TIT.2009.2032854.  Google Scholar

[15]

K. H. Kim, J. H. Choe, D. N. Lee, D. S. Go and S. Mesnager, Solutions of $x^{q^k}+\cdots+x^q+x = a$ in $\mathbb{F}_{2^n}$, arXiv: 1905.10579v1. Google Scholar

[16]

N. G. Leander, Monomial bent functions, IEEE Trans. Inf. Theory, 52 (2006), 738-743.  doi: 10.1109/TIT.2005.862121.  Google Scholar

[17]

N. LiT. HellesethA. Kholosha and X. H. Tang, On the Walsh transform of a class of functions from Niho exponents, IEEE Trans. Inf. Theory, 59 (2013), 4662-4667.  doi: 10.1109/TIT.2013.2252053.  Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, Encycl. Math. Appl., Cambridge University Press, Cambridge, 1997.  Google Scholar

[19]

S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. Inf. Theory, 60 (2014), 4397-4407.  doi: 10.1109/TIT.2014.2320974.  Google Scholar

[20]

Y. Niho., Multi-Valued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences, Ph.D. dissertation, University of Southern California, Los Angeles, 1972. Google Scholar

[21]

O. S. Rothaus, On "Bent" functions, J. Comb. Theory Ser. A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[22]

Z. Q. Sun and L. Hu, Boolean Functions with four-valued Walsh spectra, J. Syst. Sci. Complex., 28 (2015), 743-754.  doi: 10.1007/s11424-014-2224-8.  Google Scholar

[23]

Z. R. TuD. B. ZhengX. Y. Zeng and L. Hu, Boolean functions with two distinct Walsh coefficients, Appl. Algebra Eng. Commun. Comput., 22 (2011), 359-366.  doi: 10.1007/s00200-011-0155-3.  Google Scholar

[24]

Y. H. Xie, L. Hu, W. F. Jiang and X. Y. Zeng, A class of Boolean functions with four-valued Walsh spectra,, Asia-pacific Conference on Communications. IEEE Press, (2009), 880–883. doi: 10.1109/APCC.2009.5375462.  Google Scholar

[25]

G. K. XuX. W. Cao and S. D. Xu, Several new classes of Boolean functions with few Walsh transform values, Appl. Algebra Eng. Commun. Comput., 28 (2017), 155-176.  doi: 10.1007/s00200-016-0298-3.  Google Scholar

[26]

Y. L. Zheng and X. M. Zhang, On plateaued functions, IEEE Trans. Inf. Theory, 47 (2001), 1215-1223.  doi: 10.1109/18.915690.  Google Scholar

[1]

Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052

[2]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[3]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[4]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[5]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[6]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[7]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[8]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[9]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[10]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[11]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[12]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[13]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[14]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

[15]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[16]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[17]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[18]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[19]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[20]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (32)
  • HTML views (135)
  • Cited by (0)

Other articles
by authors

[Back to Top]