doi: 10.3934/amc.2020097

New quantum codes from constacyclic codes over the ring $ R_{k,m} $

Department of Mathematics, Indian Institute of Technology Patna, Patna- 801 106, India

* Corresponding author: Om Prakash

Received  December 2019 Revised  May 2020 Published  July 2020

Fund Project: The research is supported by the University Grants Commission (UGC) and the Council of Scientific & Industrial Research (CSIR), Govt. of India

For any odd prime $ p $, we study constacyclic codes of length $ n $ over the finite commutative non-chain ring $ R_{k,m} = \mathbb{F}_{p^m}[u_1,u_2,\dots,u_k]/\langle u^2_i-1,u_iu_j-u_ju_i\rangle_{i\neq j = 1,2,\dots,k} $, where $ m,k\geq 1 $ are integers. We determine the necessary and sufficient condition for these codes to contain their Euclidean duals. As an application, from the dual containing constacyclic codes, several MDS, new and better quantum codes compare to the best known codes in the literature are obtained.

Citation: Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, doi: 10.3934/amc.2020097
References:
[1]

M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $\mathbb{F}_{p} +v\mathbb{F}_{p}$, Int. J. Inf. Coding Theory, 3 (2015), 137-144.  doi: 10.1504/IJICOT.2015.072627.  Google Scholar

[2]

M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Quantum Inf. Process., 15 (2016), 4089-4098.  doi: 10.1007/s11128-016-1379-8.  Google Scholar

[3]

M. Ashraf and G. Mohammad, Quantum codes over $\mathbb{F}_{p}$ from cyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle$, Cryptogr. Commun., 11 (2019), 325-335.  doi: 10.1007/s12095-018-0299-0.  Google Scholar

[4]

W. Bosma and J. Cannon, Handbook of Magma Functions, University of Sydney, 1995. Google Scholar

[5]

A. R. CalderbankE. M. RainsP. M. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[6]

Y. Cengellenmis and A. Dertli, The Quantum Codes over $\mathbb{F}_q$ and quantum quasi-cyclic codes over $\mathbb{F}_q$, Math. Sci. Appl. E-Notes, 7 (2019), 87-93.   Google Scholar

[7]

Y. CengellenmisA. Dertli and S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 72 (2014), 559-580.  doi: 10.1007/s10623-012-9787-y.  Google Scholar

[8]

A. Dertli, Y. Cengellenmis and S. Eren, On quantum codes obtained from cyclic codes over $A_2$, Int. J. Quantum Inf., 13 (2015), 1550031, 9 pp. doi: 10.1142/S0219749915500318.  Google Scholar

[9]

M. F. Ezerman, S. Ling, B. Qzkaya and P. Sole, Good stabilizer codes from quasi-cyclic codes over $\mathbb{F}_5$ and $\mathbb{F}_9$, IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019, 2898-2902. doi: 10.1109/ISIT.2019.8849416.  Google Scholar

[10]

Y. Edel, Some good quantum twisted codes, https://www.mathi.uni-heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html., Google Scholar

[11]

J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}+v^{3}\mathbb{F}_{q}$, Int. J. Quantum Inf., 13 (2015), 1550063(1-8). doi: 10.1142/S021974991550063X.  Google Scholar

[12]

J. Gao and Y. Wang, $u$-Constacyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), Art. 4, 9 pp. doi: 10.1007/s11128-017-1775-8.  Google Scholar

[13]

Y. GaoJ. Gao and F. W. Fu, On Quantum codes from cyclic codes over the ring $\mathbb{F}_{q} +v_1\mathbb{F}_{q}+\dots+v_r\mathbb{F}_{q}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 161-174.  doi: 10.1007/s00200-018-0366-y.  Google Scholar

[14]

G. Gaurdia and R. Palazzo Jr., Constructions of new families of nonbinary CSS codes, Discrete Math., 310 (2010), 2935-2945.  doi: 10.1016/j.disc.2010.06.043.  Google Scholar

[15]

D. Gottesman, An introduction to quantum error-correction, Proc. Symp. Appl. Math., 68 (2010), 13-27.  doi: 10.1090/psapm/068/2762145.  Google Scholar

[16]

M. Grassl and T. Beth, On optimal quantum codes, Int. J. Quantum Inf., 2 (2004), 55-64.  doi: 10.1007/s11128-005-0006-x.  Google Scholar

[17]

M. Guzeltepe and M. Sari, Quantum codes from codes over the ring $\mathbb{F}_q+\alpha\mathbb{F}_q$, Quantum Inf. Process., 18 (2019), Art. 365, 21 pp. doi: 10.1007/s11128-019-2476-2.  Google Scholar

[18]

X. HeL. Xu and H. Chen, New $q$-ary quantum MDS codes with distances bigger than $\frac{q}{2}$, Quantum Inf. Process., 15 (2016), 2745-2758.  doi: 10.1007/s11128-016-1311-2.  Google Scholar

[19]

H. Islam and O. Prakash, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1, uv-vu,vw-wv,wu-uw\rangle$, J. Appl. Math. Comput., 60 (2019), 625-635.  doi: 10.1007/s12190-018-01230-1.  Google Scholar

[20]

H. IslamO. Prakash and D. K. Bhunia, Quantum codes obtained from constacyclic codes, Int J Theor Phys., 58 (2019), 3945-3951.  doi: 10.1007/s10773-019-04260-y.  Google Scholar

[21]

H. Islam, R. K. Verma and O. Prakash, A family of constacyclic codes over $\mathbb{F}_{p^m}[u, v]/\langle u^{2}-1, v^{2}-1, uv-vu\rangle$, Int. J. Inf. Coding Theory, (2020). doi: 10.1504/IJICOT.2019.10026515.  Google Scholar

[22]

H. Islam, O. Prakash and R. K. Verma, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle$, Springer Proceedings in Mathematics & Statistics, 307 (2020). doi: 10.1007/978-981-15-1157-8\_6.  Google Scholar

[23]

X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $\mathbb{F}_{4}+u\mathbb{F}_{4}$, Int. J. Quantum Inf., 9 (2011), 689-700.  doi: 10.1142/S0219749911007757.  Google Scholar

[24]

X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[25]

M. E. Koroglu and I. Siap, Quantum codes from a class of constacyclic codes over group algebras, Malays. J. Math. Sci., 11 (2017), 289-301.   Google Scholar

[26]

R. LiZ. Xu and X. Li, Binary construction of quantum codes of minimum distance three and four, IEEE Trans. Inform. Theory, 50 (2004), 1331-1336.  doi: 10.1109/TIT.2004.828149.  Google Scholar

[27]

R. Li and Z. Xu, Construction of $[[n, n-4, 3]]_q$ quantum codes for odd prime power $q$, Phys. Rev. A, 82 (2010), 052316, 1-4. doi: 10.1103/PhysRevA.82.052316.  Google Scholar

[28]

J. Li, J. Gao and Y. Wang, Quantum codes from $(1-2v)$-constacyclic codes over the ring $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Discrete Math. Algorithms Appl., 10 (2018), 1850046, 8 pp. doi: 10.1142/S1793830918500465.  Google Scholar

[29]

F. Ma, J. Gao and F. W. Fu, Constacyclic codes over the ring $\mathbb{F}_{p} +v\mathbb{F}_{p}+v^{2}\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), Art. 122, 19 pp. doi: 10.1007/s11128-018-1898-6.  Google Scholar

[30]

F. MaJ. Gao and F. W. Fu, New non-binary quantum codes from constacyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^2-1,v^2-v,uv-vu\rangle$, Adv. Math. Commun., 13 (2019), 421-434.  doi: 10.3934/amc.2019027.  Google Scholar

[31]

M. Ozen, N. T. Ozzaim and H. Ince, Quantum codes from cyclic codes over $\mathbb{F}_{3} +u\mathbb{F}_{3}+v\mathbb{F}_{3}+uv\mathbb{F}_{3}$, Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser., 766 (2016). Google Scholar

[32]

J. QianW. Ma and W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf., 7 (2009), 1277-1283.   Google Scholar

[33]

M. Sari and I. Siap, On quantum codes from cyclic codes over a class of nonchain rings, Bull. Korean Math. Soc., 53 (2016), 1617-1628.  doi: 10.4134/BKMS.b150544.  Google Scholar

[34]

A. K. Singh, S. Pattanayek, P. Kumar and K. P. Shum, On Quantum codes from cyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+u^2\mathbb{F}_{2}$, Asian-Eur. J. Math., 11 (2018), 1850009, 11 pp. doi: 10.1142/S1793557118500092.  Google Scholar

[35]

P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev.A, 52 (1995), 2493-2496.  doi: 10.1103/PhysRevA.52.R2493.  Google Scholar

[36]

X. Zheng and B. Kong, Constacyclic codes over $\mathbb{F}_{p^m}[u_1,u_2,\dots,u_k]/\langle u^2_i=u_i,u_iu_j=u_ju_i\rangle$, Open Math, 16 (2018), 490-497.  doi: 10.1515/math-2018-0045.  Google Scholar

show all references

References:
[1]

M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $\mathbb{F}_{p} +v\mathbb{F}_{p}$, Int. J. Inf. Coding Theory, 3 (2015), 137-144.  doi: 10.1504/IJICOT.2015.072627.  Google Scholar

[2]

M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Quantum Inf. Process., 15 (2016), 4089-4098.  doi: 10.1007/s11128-016-1379-8.  Google Scholar

[3]

M. Ashraf and G. Mohammad, Quantum codes over $\mathbb{F}_{p}$ from cyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle$, Cryptogr. Commun., 11 (2019), 325-335.  doi: 10.1007/s12095-018-0299-0.  Google Scholar

[4]

W. Bosma and J. Cannon, Handbook of Magma Functions, University of Sydney, 1995. Google Scholar

[5]

A. R. CalderbankE. M. RainsP. M. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[6]

Y. Cengellenmis and A. Dertli, The Quantum Codes over $\mathbb{F}_q$ and quantum quasi-cyclic codes over $\mathbb{F}_q$, Math. Sci. Appl. E-Notes, 7 (2019), 87-93.   Google Scholar

[7]

Y. CengellenmisA. Dertli and S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 72 (2014), 559-580.  doi: 10.1007/s10623-012-9787-y.  Google Scholar

[8]

A. Dertli, Y. Cengellenmis and S. Eren, On quantum codes obtained from cyclic codes over $A_2$, Int. J. Quantum Inf., 13 (2015), 1550031, 9 pp. doi: 10.1142/S0219749915500318.  Google Scholar

[9]

M. F. Ezerman, S. Ling, B. Qzkaya and P. Sole, Good stabilizer codes from quasi-cyclic codes over $\mathbb{F}_5$ and $\mathbb{F}_9$, IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019, 2898-2902. doi: 10.1109/ISIT.2019.8849416.  Google Scholar

[10]

Y. Edel, Some good quantum twisted codes, https://www.mathi.uni-heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html., Google Scholar

[11]

J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}+v^{3}\mathbb{F}_{q}$, Int. J. Quantum Inf., 13 (2015), 1550063(1-8). doi: 10.1142/S021974991550063X.  Google Scholar

[12]

J. Gao and Y. Wang, $u$-Constacyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), Art. 4, 9 pp. doi: 10.1007/s11128-017-1775-8.  Google Scholar

[13]

Y. GaoJ. Gao and F. W. Fu, On Quantum codes from cyclic codes over the ring $\mathbb{F}_{q} +v_1\mathbb{F}_{q}+\dots+v_r\mathbb{F}_{q}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 161-174.  doi: 10.1007/s00200-018-0366-y.  Google Scholar

[14]

G. Gaurdia and R. Palazzo Jr., Constructions of new families of nonbinary CSS codes, Discrete Math., 310 (2010), 2935-2945.  doi: 10.1016/j.disc.2010.06.043.  Google Scholar

[15]

D. Gottesman, An introduction to quantum error-correction, Proc. Symp. Appl. Math., 68 (2010), 13-27.  doi: 10.1090/psapm/068/2762145.  Google Scholar

[16]

M. Grassl and T. Beth, On optimal quantum codes, Int. J. Quantum Inf., 2 (2004), 55-64.  doi: 10.1007/s11128-005-0006-x.  Google Scholar

[17]

M. Guzeltepe and M. Sari, Quantum codes from codes over the ring $\mathbb{F}_q+\alpha\mathbb{F}_q$, Quantum Inf. Process., 18 (2019), Art. 365, 21 pp. doi: 10.1007/s11128-019-2476-2.  Google Scholar

[18]

X. HeL. Xu and H. Chen, New $q$-ary quantum MDS codes with distances bigger than $\frac{q}{2}$, Quantum Inf. Process., 15 (2016), 2745-2758.  doi: 10.1007/s11128-016-1311-2.  Google Scholar

[19]

H. Islam and O. Prakash, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1, uv-vu,vw-wv,wu-uw\rangle$, J. Appl. Math. Comput., 60 (2019), 625-635.  doi: 10.1007/s12190-018-01230-1.  Google Scholar

[20]

H. IslamO. Prakash and D. K. Bhunia, Quantum codes obtained from constacyclic codes, Int J Theor Phys., 58 (2019), 3945-3951.  doi: 10.1007/s10773-019-04260-y.  Google Scholar

[21]

H. Islam, R. K. Verma and O. Prakash, A family of constacyclic codes over $\mathbb{F}_{p^m}[u, v]/\langle u^{2}-1, v^{2}-1, uv-vu\rangle$, Int. J. Inf. Coding Theory, (2020). doi: 10.1504/IJICOT.2019.10026515.  Google Scholar

[22]

H. Islam, O. Prakash and R. K. Verma, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle$, Springer Proceedings in Mathematics & Statistics, 307 (2020). doi: 10.1007/978-981-15-1157-8\_6.  Google Scholar

[23]

X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $\mathbb{F}_{4}+u\mathbb{F}_{4}$, Int. J. Quantum Inf., 9 (2011), 689-700.  doi: 10.1142/S0219749911007757.  Google Scholar

[24]

X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[25]

M. E. Koroglu and I. Siap, Quantum codes from a class of constacyclic codes over group algebras, Malays. J. Math. Sci., 11 (2017), 289-301.   Google Scholar

[26]

R. LiZ. Xu and X. Li, Binary construction of quantum codes of minimum distance three and four, IEEE Trans. Inform. Theory, 50 (2004), 1331-1336.  doi: 10.1109/TIT.2004.828149.  Google Scholar

[27]

R. Li and Z. Xu, Construction of $[[n, n-4, 3]]_q$ quantum codes for odd prime power $q$, Phys. Rev. A, 82 (2010), 052316, 1-4. doi: 10.1103/PhysRevA.82.052316.  Google Scholar

[28]

J. Li, J. Gao and Y. Wang, Quantum codes from $(1-2v)$-constacyclic codes over the ring $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Discrete Math. Algorithms Appl., 10 (2018), 1850046, 8 pp. doi: 10.1142/S1793830918500465.  Google Scholar

[29]

F. Ma, J. Gao and F. W. Fu, Constacyclic codes over the ring $\mathbb{F}_{p} +v\mathbb{F}_{p}+v^{2}\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), Art. 122, 19 pp. doi: 10.1007/s11128-018-1898-6.  Google Scholar

[30]

F. MaJ. Gao and F. W. Fu, New non-binary quantum codes from constacyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^2-1,v^2-v,uv-vu\rangle$, Adv. Math. Commun., 13 (2019), 421-434.  doi: 10.3934/amc.2019027.  Google Scholar

[31]

M. Ozen, N. T. Ozzaim and H. Ince, Quantum codes from cyclic codes over $\mathbb{F}_{3} +u\mathbb{F}_{3}+v\mathbb{F}_{3}+uv\mathbb{F}_{3}$, Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser., 766 (2016). Google Scholar

[32]

J. QianW. Ma and W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf., 7 (2009), 1277-1283.   Google Scholar

[33]

M. Sari and I. Siap, On quantum codes from cyclic codes over a class of nonchain rings, Bull. Korean Math. Soc., 53 (2016), 1617-1628.  doi: 10.4134/BKMS.b150544.  Google Scholar

[34]

A. K. Singh, S. Pattanayek, P. Kumar and K. P. Shum, On Quantum codes from cyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+u^2\mathbb{F}_{2}$, Asian-Eur. J. Math., 11 (2018), 1850009, 11 pp. doi: 10.1142/S1793557118500092.  Google Scholar

[35]

P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev.A, 52 (1995), 2493-2496.  doi: 10.1103/PhysRevA.52.R2493.  Google Scholar

[36]

X. Zheng and B. Kong, Constacyclic codes over $\mathbb{F}_{p^m}[u_1,u_2,\dots,u_k]/\langle u^2_i=u_i,u_iu_j=u_ju_i\rangle$, Open Math, 16 (2018), 490-497.  doi: 10.1515/math-2018-0045.  Google Scholar

Table 1.  Quantum MDS codes $ [[n,k,d]]_{p^m} $ from constacyclic codes over $ R_{1,m} = \mathbb{F}_{p^m}[u_1]/\langle u_1^2-1\rangle $
$ p^m $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $
$ 5 $ $ 2 $ $ -1 $ $ (-1,-1) $ $ 13 $ $ 1 $ $ M_4 $ $ [4,3,2] $ $ [[4,2,2]]_5 $
$ 13 $ $ 6 $ $ u_1 $ $ (1,-1) $ $ 13 $ $ 15 $ $ M_7 $ $ [12,10,3] $ $ [[12,8,3]]_{13} $
$ 11 $ $ 5 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 14 $ $ M_8 $ $ [10,8,3] $ $ [[10,6,3]]_{11} $
$ 11 $ $ 5 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 184 $ $ M_8 $ $ [10,7,4] $ $ [[10,4,4]]_{11} $
$ 17 $ $ 8 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 17 $ $ M_9 $ $ [16,14,3] $ $ [[16,12,3]]_{17} $
$ 23 $ $ 11 $ $ u_1 $ $ (1,-1) $ $ 17 $ $ 13 $ $ M_{10} $ $ [22,20,3] $ $ [[22,18,3]]_{23} $
$ 19 $ $ 9 $ $ u_1 $ $ (1,-1) $ $ 13 $ $ 14 $ $ M_{11} $ $ [18,16,3] $ $ [[18,14,3]]_{19} $
$ 29 $ $ 14 $ $ u_1 $ $ (1,-1) $ $ 1(13) $ $ 13 $ $ M_{12} $ $ [28,26,3] $ $ [[28,24,3]]_{29} $
$ p^m $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $
$ 5 $ $ 2 $ $ -1 $ $ (-1,-1) $ $ 13 $ $ 1 $ $ M_4 $ $ [4,3,2] $ $ [[4,2,2]]_5 $
$ 13 $ $ 6 $ $ u_1 $ $ (1,-1) $ $ 13 $ $ 15 $ $ M_7 $ $ [12,10,3] $ $ [[12,8,3]]_{13} $
$ 11 $ $ 5 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 14 $ $ M_8 $ $ [10,8,3] $ $ [[10,6,3]]_{11} $
$ 11 $ $ 5 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 184 $ $ M_8 $ $ [10,7,4] $ $ [[10,4,4]]_{11} $
$ 17 $ $ 8 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 17 $ $ M_9 $ $ [16,14,3] $ $ [[16,12,3]]_{17} $
$ 23 $ $ 11 $ $ u_1 $ $ (1,-1) $ $ 17 $ $ 13 $ $ M_{10} $ $ [22,20,3] $ $ [[22,18,3]]_{23} $
$ 19 $ $ 9 $ $ u_1 $ $ (1,-1) $ $ 13 $ $ 14 $ $ M_{11} $ $ [18,16,3] $ $ [[18,14,3]]_{19} $
$ 29 $ $ 14 $ $ u_1 $ $ (1,-1) $ $ 1(13) $ $ 13 $ $ M_{12} $ $ [28,26,3] $ $ [[28,24,3]]_{29} $
Table 3.  New Quantum codes $ [[n,k,d]]_{p^m} $ from constacyclic codes over $ R_{1,m} = \mathbb{F}_{p^m}[u_1]/\langle u_1^2-1\rangle $
$ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
$ 3 $ $ 12 $ $ -1 $ $ (-1,-1) $ $ 112 $ $ 122 $ $ M_1 $ $ [24,20,4] $ $ [[24,16,4]]_3 $ $ [[26,16,4]]_3 $ [9]
$ 3 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 11111 $ $ 12121 $ $ M_1 $ $ [30,22,6] $ $ [[30,14,6]]_3 $ $ [[31,13,6]]_3 $ [9]
$ 3 $ $ 18 $ $ u_1 $ $ (1,-1) $ $ 12021 $ $ 10201 $ $ M_2 $ $ [36,28,3] $ $ [[36,20,3]]_3 $ $ - $
$ 3 $ $ 30 $ $ 1 $ $ (1,1) $ $ 11 $ $ 12 $ $ M_2 $ $ [60,58,2] $ $ [[60,56,2]]_3 $ $ [[60,54,2]]_3 $ [12]
$ 3 $ $ 36 $ $ 1 $ $ (1,1) $ $ 12 $ $ 12 $ $ M_2 $ $ [72,70,2] $ $ [[72,68,2]]_3 $ $ [[72,66,2]]_3 $[12, 13]
$ 5 $ $ 10 $ $ u_1 $ $ (1,-1) $ $ 131 $ $ 12 $ $ M_4 $ $ [20,17,3] $ $ [[20,14,3]]_5 $ $ [[22,14,3]]_5 $[10]
$ 5 $ $ 10 $ $ u_1 $ $ (1,-1) $ $ 1441 $ $ 143122 $ $ M_4 $ $ [20,12,5] $ $ [[20,4,5]]_5 $ $ [[19,1,5]]_5 $[10]
$ 5 $ $ 11 $ $ u_1 $ $ (1,-1) $ $ 124114 $ $ 114431 $ $ M_4 $ $ [22,12,7] $ $ [[22,2,7]]_5 $ $ [[22,2,5]]_5 $[10, 17]
$ 5 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 10224 $ $ 12041 $ $ M_4 $ $ [24,16,5] $ $ [[24,8,5]]_5 $ $ [[23,6,5]]_5 $[10]
$ 5 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 1003001 $ $ 1003421 $ $ M_4 $ $ [30,18,6] $ $ [[30,6,6]]_5 $ $ [[60,8,6]]_5 $[6]
$ 5 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 1003001 $ $ 11021 $ $ M_4 $ $ [30,20,4] $ $ [[30,10,4]]_5 $ $ [[30,10,2]]_5 $[6]
$ 5 $ $ 20 $ $ 1 $ $ (1,1) $ $ 1034 $ $ 12 $ $ M_4 $ $ [40,36,3] $ $ [[40,32,3]]_5 $ $ [[40,24,3]]_5 $ [30]
$ 5 $ $ 22 $ $ u_1 $ $ (1,-1) $ $ 13024212034 $ $ 111212 $ $ M_4 $ $ [44,29,8] $ $ [[44,14,8]]_5 $ $ [[44,4,8]]_5 $ [30]
$ 5 $ $ 30 $ $ u_1 $ $ (1,-1) $ $ 13431 $ $ 13 $ $ M_4 $ $ [60,55,3] $ $ [[60,50,3]]_5 $ $ [[60,48,3]]_5 $ [29]
$ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
$ 3 $ $ 12 $ $ -1 $ $ (-1,-1) $ $ 112 $ $ 122 $ $ M_1 $ $ [24,20,4] $ $ [[24,16,4]]_3 $ $ [[26,16,4]]_3 $ [9]
$ 3 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 11111 $ $ 12121 $ $ M_1 $ $ [30,22,6] $ $ [[30,14,6]]_3 $ $ [[31,13,6]]_3 $ [9]
$ 3 $ $ 18 $ $ u_1 $ $ (1,-1) $ $ 12021 $ $ 10201 $ $ M_2 $ $ [36,28,3] $ $ [[36,20,3]]_3 $ $ - $
$ 3 $ $ 30 $ $ 1 $ $ (1,1) $ $ 11 $ $ 12 $ $ M_2 $ $ [60,58,2] $ $ [[60,56,2]]_3 $ $ [[60,54,2]]_3 $ [12]
$ 3 $ $ 36 $ $ 1 $ $ (1,1) $ $ 12 $ $ 12 $ $ M_2 $ $ [72,70,2] $ $ [[72,68,2]]_3 $ $ [[72,66,2]]_3 $[12, 13]
$ 5 $ $ 10 $ $ u_1 $ $ (1,-1) $ $ 131 $ $ 12 $ $ M_4 $ $ [20,17,3] $ $ [[20,14,3]]_5 $ $ [[22,14,3]]_5 $[10]
$ 5 $ $ 10 $ $ u_1 $ $ (1,-1) $ $ 1441 $ $ 143122 $ $ M_4 $ $ [20,12,5] $ $ [[20,4,5]]_5 $ $ [[19,1,5]]_5 $[10]
$ 5 $ $ 11 $ $ u_1 $ $ (1,-1) $ $ 124114 $ $ 114431 $ $ M_4 $ $ [22,12,7] $ $ [[22,2,7]]_5 $ $ [[22,2,5]]_5 $[10, 17]
$ 5 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 10224 $ $ 12041 $ $ M_4 $ $ [24,16,5] $ $ [[24,8,5]]_5 $ $ [[23,6,5]]_5 $[10]
$ 5 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 1003001 $ $ 1003421 $ $ M_4 $ $ [30,18,6] $ $ [[30,6,6]]_5 $ $ [[60,8,6]]_5 $[6]
$ 5 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 1003001 $ $ 11021 $ $ M_4 $ $ [30,20,4] $ $ [[30,10,4]]_5 $ $ [[30,10,2]]_5 $[6]
$ 5 $ $ 20 $ $ 1 $ $ (1,1) $ $ 1034 $ $ 12 $ $ M_4 $ $ [40,36,3] $ $ [[40,32,3]]_5 $ $ [[40,24,3]]_5 $ [30]
$ 5 $ $ 22 $ $ u_1 $ $ (1,-1) $ $ 13024212034 $ $ 111212 $ $ M_4 $ $ [44,29,8] $ $ [[44,14,8]]_5 $ $ [[44,4,8]]_5 $ [30]
$ 5 $ $ 30 $ $ u_1 $ $ (1,-1) $ $ 13431 $ $ 13 $ $ M_4 $ $ [60,55,3] $ $ [[60,50,3]]_5 $ $ [[60,48,3]]_5 $ [29]
Table 4.  New Quantum codes $ [[n,k,d]]_{p^m} $ from constacyclic codes over $ R_{1,m}=\mathbb{F}_{p^m}[u_1]/\langle u_1^2-1\rangle $
$ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
$ 5 $ $ 60 $ $ 1 $ $ (1,1) $ $ 13 $ $ 12 $ $ M_4 $ $ [120,118,2] $ $ [[120,116,2]]_5 $ $ [[120,114,2]]_5 $ [13, 29]
$ 5 $ $ 70 $ $ u_1 $ $ (1,-1) $ $ 134444431 $ $ 13 $ $ M_4 $ $ [140,131,3] $ $ [[140,122,3]]_5 $ $ [[140,116,3]]_5 $ [30]
$ 7 $ $ 7 $ $ u_1 $ $ (1,-1 ) $ $ 151 $ $ 121 $ $ M_5 $ $ [14,10,3] $ $ [[14,6,3]]_7 $ $ [[14,2,3]]_7 $[33]
$ 7 $ $ 7 $ $ u_1 $ $ (1,-1) $ $ 1436 $ $ 1331 $ $ M_5 $ $ [14,8,4] $ $ [[14,2,4]]_7 $ $ [[14,2,3]]_7 $[33]
$ 7 $ $ 14 $ $ 1 $ $ (1,1) $ $ 1661 $ $ 16 $ $ M_5 $ $ [28,24,3] $ $ [[28,20,3]]_7 $ $ [[27,17,3]]_7 $[29]
$ 7 $ $ 14 $ $ 1 $ $ (1,1) $ $ 15026 $ $ 11 $ $ M_5 $ $ [28,23,4] $ $ [[28,18,4]]_7 $ $ [[27,15,4]]_7 $[29]
$ 7 $ $ 21 $ $ u_1 $ $ (1,-1) $ $ 1054214515 $ $ 1515511 $ $ M_6 $ $ [42,27,7] $ $ [[42,12,7]]_7 $ $ [[37,1,7]]_7 $[10]
$ 7 $ $ 84 $ $ 1 $ $ (1,1) $ $ 12 $ $ 13 $ $ M_6 $ $ [168,166,2] $ $ [[168,164,2]]_7 $ $ [[168,162,2]]_7 $[13]
$ 9 $ $ 8 $ $ 1 $ $ (1,1) $ $ 1w^3w^3 $ $ 1w^2 $ $ M_3 $ $ [16,13,3] $ $ [[16,10,3]]_9 $ $ [[16,8,3]]_9 $[30]
$ 9 $ $ 8 $ $ u_1 $ $ (1,-1) $ $ 1w^7ww^6 $ $ 10w^201 $ $ M_3 $ $ [16,9,5] $ $ [[16,2,5]]_9 $ $ [[17,1,4]]_9 $[10]
$ 9 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 102w^60w^2 $ $ 1w^3 $ $ M_3 $ $ [24,18,4] $ $ [[24,10,4]]_9 $ $ [[24,8,4]]_9 $[30]
$ 11 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 1(10)382(10)9 $ $ 19(12)39 $ $ M_8 $ $ [30,20,6] $ $ [[30,10,6]]_{11} $ $ [[30,10,5]]_{11} $[25]
$ 11 $ $ 26 $ $ -1 $ $ (-1,-1) $ $ 1342443749481 $ $ 1849473442431 $ $ M_8 $ $ [52,28,10] $ $ [[52,4,10]]_{11} $ $ [[52,4,8]]_{11} $[25]
$ 11 $ $ 33 $ $ u_1 $ $ (1,1) $ $ 191(10)2(10) $ $ 11 $ $ M_8 $ $ [66,60,4] $ $ [[66,54,4]]_{11} $ $ [[66,52,4]]_{11} $ [29]
$ 11 $ $ 33 $ $ u_1 $ $ (1,1) $ $ 191949191 $ $ 11 $ $ M_8 $ $ [66,57,5] $ $ [[66,48,5]]_{11} $ $ [[57,39,5]]_{11} $ [29]
$ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
$ 5 $ $ 60 $ $ 1 $ $ (1,1) $ $ 13 $ $ 12 $ $ M_4 $ $ [120,118,2] $ $ [[120,116,2]]_5 $ $ [[120,114,2]]_5 $ [13, 29]
$ 5 $ $ 70 $ $ u_1 $ $ (1,-1) $ $ 134444431 $ $ 13 $ $ M_4 $ $ [140,131,3] $ $ [[140,122,3]]_5 $ $ [[140,116,3]]_5 $ [30]
$ 7 $ $ 7 $ $ u_1 $ $ (1,-1 ) $ $ 151 $ $ 121 $ $ M_5 $ $ [14,10,3] $ $ [[14,6,3]]_7 $ $ [[14,2,3]]_7 $[33]
$ 7 $ $ 7 $ $ u_1 $ $ (1,-1) $ $ 1436 $ $ 1331 $ $ M_5 $ $ [14,8,4] $ $ [[14,2,4]]_7 $ $ [[14,2,3]]_7 $[33]
$ 7 $ $ 14 $ $ 1 $ $ (1,1) $ $ 1661 $ $ 16 $ $ M_5 $ $ [28,24,3] $ $ [[28,20,3]]_7 $ $ [[27,17,3]]_7 $[29]
$ 7 $ $ 14 $ $ 1 $ $ (1,1) $ $ 15026 $ $ 11 $ $ M_5 $ $ [28,23,4] $ $ [[28,18,4]]_7 $ $ [[27,15,4]]_7 $[29]
$ 7 $ $ 21 $ $ u_1 $ $ (1,-1) $ $ 1054214515 $ $ 1515511 $ $ M_6 $ $ [42,27,7] $ $ [[42,12,7]]_7 $ $ [[37,1,7]]_7 $[10]
$ 7 $ $ 84 $ $ 1 $ $ (1,1) $ $ 12 $ $ 13 $ $ M_6 $ $ [168,166,2] $ $ [[168,164,2]]_7 $ $ [[168,162,2]]_7 $[13]
$ 9 $ $ 8 $ $ 1 $ $ (1,1) $ $ 1w^3w^3 $ $ 1w^2 $ $ M_3 $ $ [16,13,3] $ $ [[16,10,3]]_9 $ $ [[16,8,3]]_9 $[30]
$ 9 $ $ 8 $ $ u_1 $ $ (1,-1) $ $ 1w^7ww^6 $ $ 10w^201 $ $ M_3 $ $ [16,9,5] $ $ [[16,2,5]]_9 $ $ [[17,1,4]]_9 $[10]
$ 9 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 102w^60w^2 $ $ 1w^3 $ $ M_3 $ $ [24,18,4] $ $ [[24,10,4]]_9 $ $ [[24,8,4]]_9 $[30]
$ 11 $ $ 15 $ $ u_1 $ $ (1,-1) $ $ 1(10)382(10)9 $ $ 19(12)39 $ $ M_8 $ $ [30,20,6] $ $ [[30,10,6]]_{11} $ $ [[30,10,5]]_{11} $[25]
$ 11 $ $ 26 $ $ -1 $ $ (-1,-1) $ $ 1342443749481 $ $ 1849473442431 $ $ M_8 $ $ [52,28,10] $ $ [[52,4,10]]_{11} $ $ [[52,4,8]]_{11} $[25]
$ 11 $ $ 33 $ $ u_1 $ $ (1,1) $ $ 191(10)2(10) $ $ 11 $ $ M_8 $ $ [66,60,4] $ $ [[66,54,4]]_{11} $ $ [[66,52,4]]_{11} $ [29]
$ 11 $ $ 33 $ $ u_1 $ $ (1,1) $ $ 191949191 $ $ 11 $ $ M_8 $ $ [66,57,5] $ $ [[66,48,5]]_{11} $ $ [[57,39,5]]_{11} $ [29]
Table 5.  New Quantum codes $ [[n,k,d]]_{p^m} $ from constacyclic codes over $ R_{1,m} = \mathbb{F}_{p^m}[u_1]/\langle u_1^2-1\rangle $
$ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
$ 13 $ $ 6 $ $ u_1 $ $ (1,-1 ) $ $ 17(12) $ $ 17(10) $ $ M_7 $ $ [12,8,4] $ $ [[12,4,4]]_{13} $ $ [[12,4,3]]_{13} $[13]
$ 13 $ $ 8 $ $ u_1 $ $ (1,-1 ) $ $ 15 $ $ 155(12) $ $ M_7 $ $ [16,12,3] $ $ [[16,8,3]]_{13} $ $ [[16,8,2]]_{13} $[11]
$ 13 $ $ 9 $ $ u_1 $ $ (1,-1 ) $ $ 1(10) $ $ 1003 $ $ M_7 $ $ [18,14,3] $ $ [[18,10,3]]_{13} $ $ [[12,4,3]]_{13} $[11]
$ 13 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 102 $ $ M_7 $ $ [24,21,3] $ $ [[24,18,3]]_{13} $ $ [[24,16,3]]_{13} $[30]
$ 13 $ $ 13 $ $ u_1 $ $ (1,-1) $ $ 1(11)1 $ $ 121 $ $ M_7 $ $ [26,22,3] $ $ [[26,18,3]]_{13} $ $ [[36,20,3]]_{13} $[25]
$ 13 $ $ 13 $ $ u_1 $ $ (1,-1) $ $ 1(11)1 $ $ 14641 $ $ M_7 $ $ [26,20,5] $ $ [[26,14,5]]_{13} $ $ [[24,8,5]]_{13} $[13]
$ 13 $ $ 13 $ $ u_1 $ $ (1,-1) $ $ 1(11)1 $ $ 15(10)(10)51 $ $ M_7 $ $ [26,19,6] $ $ [[26,12,6]]_{13} $ $ [[24,4,6]]_{13} $[13]
$ 13 $ $ 18 $ $ u_1 $ $ (1,-1) $ $ 13 $ $ 12 $ $ M_7 $ $ [36,34,2] $ $ [[36,32,2]]_{13} $ $ [[36,30,2]]_{13} $[13]
$ 13 $ $ 18 $ $ u_1 $ $ (1,-1) $ $ 130780(12)(10) $ $ 120830(12)(11) $ $ M_7 $ $ [36,22,6] $ $ [[36,8,6]]_{13} $ $ [[36,8,4]]_{13} $[25]
$ 17 $ $ 8 $ $ u_1 $ $ (1,-1) $ $ 168 $ $ 15 $ $ M_9 $ $ [16,13,3] $ $ [[16,10,3]]_{17} $ $ [[16,8,3]]_{17} $ [30]
$ 17 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 14 $ $ 124 $ $ M_9 $ $ [24,21,3] $ $ [[24,18,3]]_{17} $ $ [[24,18,2]]_{17} $[13]
$ 17 $ $ 16 $ $ u_1 $ $ (1,-1) $ $ 1(14)311 $ $ 1010(10)0(14) $ $ M_9 $ $ [32,22,7] $ $ [[32,12,7]]_{17} $ $ [[32,12,6]]_{17} $[13]
$ 17 $ $ 16 $ $ u_1 $ $ (1,-1) $ $ 1(15)(12)24(13)(12) $ $ 10(12)040501 $ $ M_9 $ $ [32,18,10] $ $ [[32,4,10]]_{17} $ $ [[32,4,8]]_{17} $[13]
$ 17 $ $ 24 $ $ u_1 $ $ (1,-1) $ $ 16(12)(16) $ $ 17 $ $ M_9 $ $ [48,44,3] $ $ [[48,40,3]]_{17} $ $ [[48,36,3]]_{17} $[13]
$ 17 $ $ 24 $ $ u_1 $ $ (1,-1) $ $ 1(14)9(10)9 $ $ 1(11) $ $ M_9 $ $ [48,43,3] $ $ [[48,38,4]]_{17} $ $ [[48,30,4]]_{17} $[13]
$ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ f_0(x) $ $ f_1(x) $ $ M $ $ \psi(\mathcal{C}) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
$ 13 $ $ 6 $ $ u_1 $ $ (1,-1 ) $ $ 17(12) $ $ 17(10) $ $ M_7 $ $ [12,8,4] $ $ [[12,4,4]]_{13} $ $ [[12,4,3]]_{13} $[13]
$ 13 $ $ 8 $ $ u_1 $ $ (1,-1 ) $ $ 15 $ $ 155(12) $ $ M_7 $ $ [16,12,3] $ $ [[16,8,3]]_{13} $ $ [[16,8,2]]_{13} $[11]
$ 13 $ $ 9 $ $ u_1 $ $ (1,-1 ) $ $ 1(10) $ $ 1003 $ $ M_7 $ $ [18,14,3] $ $ [[18,10,3]]_{13} $ $ [[12,4,3]]_{13} $[11]
$ 13 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 12 $ $ 102 $ $ M_7 $ $ [24,21,3] $ $ [[24,18,3]]_{13} $ $ [[24,16,3]]_{13} $[30]
$ 13 $ $ 13 $ $ u_1 $ $ (1,-1) $ $ 1(11)1 $ $ 121 $ $ M_7 $ $ [26,22,3] $ $ [[26,18,3]]_{13} $ $ [[36,20,3]]_{13} $[25]
$ 13 $ $ 13 $ $ u_1 $ $ (1,-1) $ $ 1(11)1 $ $ 14641 $ $ M_7 $ $ [26,20,5] $ $ [[26,14,5]]_{13} $ $ [[24,8,5]]_{13} $[13]
$ 13 $ $ 13 $ $ u_1 $ $ (1,-1) $ $ 1(11)1 $ $ 15(10)(10)51 $ $ M_7 $ $ [26,19,6] $ $ [[26,12,6]]_{13} $ $ [[24,4,6]]_{13} $[13]
$ 13 $ $ 18 $ $ u_1 $ $ (1,-1) $ $ 13 $ $ 12 $ $ M_7 $ $ [36,34,2] $ $ [[36,32,2]]_{13} $ $ [[36,30,2]]_{13} $[13]
$ 13 $ $ 18 $ $ u_1 $ $ (1,-1) $ $ 130780(12)(10) $ $ 120830(12)(11) $ $ M_7 $ $ [36,22,6] $ $ [[36,8,6]]_{13} $ $ [[36,8,4]]_{13} $[25]
$ 17 $ $ 8 $ $ u_1 $ $ (1,-1) $ $ 168 $ $ 15 $ $ M_9 $ $ [16,13,3] $ $ [[16,10,3]]_{17} $ $ [[16,8,3]]_{17} $ [30]
$ 17 $ $ 12 $ $ u_1 $ $ (1,-1) $ $ 14 $ $ 124 $ $ M_9 $ $ [24,21,3] $ $ [[24,18,3]]_{17} $ $ [[24,18,2]]_{17} $[13]
$ 17 $ $ 16 $ $ u_1 $ $ (1,-1) $ $ 1(14)311 $ $ 1010(10)0(14) $ $ M_9 $ $ [32,22,7] $ $ [[32,12,7]]_{17} $ $ [[32,12,6]]_{17} $[13]
$ 17 $ $ 16 $ $ u_1 $ $ (1,-1) $ $ 1(15)(12)24(13)(12) $ $ 10(12)040501 $ $ M_9 $ $ [32,18,10] $ $ [[32,4,10]]_{17} $ $ [[32,4,8]]_{17} $[13]
$ 17 $ $ 24 $ $ u_1 $ $ (1,-1) $ $ 16(12)(16) $ $ 17 $ $ M_9 $ $ [48,44,3] $ $ [[48,40,3]]_{17} $ $ [[48,36,3]]_{17} $[13]
$ 17 $ $ 24 $ $ u_1 $ $ (1,-1) $ $ 1(14)9(10)9 $ $ 1(11) $ $ M_9 $ $ [48,43,3] $ $ [[48,38,4]]_{17} $ $ [[48,30,4]]_{17} $[13]
Table 2.  Matrix Encoding
$ M $ $ GL_2(\mathbb{F}_{p^m}) $ $ MM^t=cI_2 $ $ M $ $ GL_2(\mathbb{F}_{p^m}) $ $ MM^t=cI_2 $
${M_1} = \left[ {\begin{array}{*{20}{c}} 2&1\\ 2&2 \end{array}} \right]$ $ GL_2(\mathbb{F}_3) $ $ M_1M_1^t=2I_2 $ ${M_7} = \left[ {\begin{array}{*{20}{c}} 3&3\\ 3&{10} \end{array}} \right]$ $ GL_2(\mathbb{F}_{13}) $ $ M_7M_7^t=5I_2 $
${M_2} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&2 \end{array}} \right]$ $ GL_2(\mathbb{F}_3) $ $ M_2M_2^t=2I_2 $ ${M_8} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&{10} \end{array}} \right]$ $ GL_2(\mathbb{F}_{11}) $ $ M_8M_8^t=2I_2 $
${M_3} = \left[ {\begin{array}{*{20}{c}} w&{ - 1}\\ 1&w \end{array}} \right]$ $ GL_2(\mathbb{F}_9) $ $ M_3M_3^t=(1+w^2)I_2 $ ${M_9} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&{15} \end{array}} \right]$ $ GL_2(\mathbb{F}_{17}) $ $ M_9M_9^t=8I_2 $
${M_4} = \left[ {\begin{array}{*{20}{c}} 1&4\\ 1&1 \end{array}} \right]$ $ GL_2(\mathbb{F}_{5}) $ $ M_4M_4^t=2I_2 $ $ {M_{10}} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&{22} \end{array}} \right]$ $ GL_2(\mathbb{F}_{23}) $ $ M_{10}M_{10}^t=2I_2 $
$ {M_5} = \left[ {\begin{array}{*{20}{c}} 3&4\\ 3&3 \end{array}} \right] $ $ GL_2(\mathbb{F}_{7}) $ $ M_5M_5^t=4I_2 $ $ {M_{11}} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&{17} \end{array}} \right] $ $ GL_2(\mathbb{F}_{19}) $ $ M_{11}M_{11}^t=8I_2 $
$ {M_6} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&6 \end{array}} \right] $ $ GL_2(\mathbb{F}_{7}) $ $ M_6M_6^t=2I_2 $ $ {M_{12}} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&{27} \end{array}} \right] $ $ GL_2(\mathbb{F}_{29}) $ $ M_{12}M_{12}^t=8I_2 $
$ M $ $ GL_2(\mathbb{F}_{p^m}) $ $ MM^t=cI_2 $ $ M $ $ GL_2(\mathbb{F}_{p^m}) $ $ MM^t=cI_2 $
${M_1} = \left[ {\begin{array}{*{20}{c}} 2&1\\ 2&2 \end{array}} \right]$ $ GL_2(\mathbb{F}_3) $ $ M_1M_1^t=2I_2 $ ${M_7} = \left[ {\begin{array}{*{20}{c}} 3&3\\ 3&{10} \end{array}} \right]$ $ GL_2(\mathbb{F}_{13}) $ $ M_7M_7^t=5I_2 $
${M_2} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&2 \end{array}} \right]$ $ GL_2(\mathbb{F}_3) $ $ M_2M_2^t=2I_2 $ ${M_8} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&{10} \end{array}} \right]$ $ GL_2(\mathbb{F}_{11}) $ $ M_8M_8^t=2I_2 $
${M_3} = \left[ {\begin{array}{*{20}{c}} w&{ - 1}\\ 1&w \end{array}} \right]$ $ GL_2(\mathbb{F}_9) $ $ M_3M_3^t=(1+w^2)I_2 $ ${M_9} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&{15} \end{array}} \right]$ $ GL_2(\mathbb{F}_{17}) $ $ M_9M_9^t=8I_2 $
${M_4} = \left[ {\begin{array}{*{20}{c}} 1&4\\ 1&1 \end{array}} \right]$ $ GL_2(\mathbb{F}_{5}) $ $ M_4M_4^t=2I_2 $ $ {M_{10}} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&{22} \end{array}} \right]$ $ GL_2(\mathbb{F}_{23}) $ $ M_{10}M_{10}^t=2I_2 $
$ {M_5} = \left[ {\begin{array}{*{20}{c}} 3&4\\ 3&3 \end{array}} \right] $ $ GL_2(\mathbb{F}_{7}) $ $ M_5M_5^t=4I_2 $ $ {M_{11}} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&{17} \end{array}} \right] $ $ GL_2(\mathbb{F}_{19}) $ $ M_{11}M_{11}^t=8I_2 $
$ {M_6} = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&6 \end{array}} \right] $ $ GL_2(\mathbb{F}_{7}) $ $ M_6M_6^t=2I_2 $ $ {M_{12}} = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&{27} \end{array}} \right] $ $ GL_2(\mathbb{F}_{29}) $ $ M_{12}M_{12}^t=8I_2 $
[1]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[2]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[3]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[6]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[7]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[8]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[9]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[10]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[11]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[12]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[13]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[14]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[15]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[16]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[17]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (74)
  • HTML views (288)
  • Cited by (1)

Other articles
by authors

[Back to Top]