doi: 10.3934/amc.2020099

Locally repairable codes with high availability based on generalised quadrangles

1. 

Faculty of Engineering and Natural Sciences, Sabancı University, 34956 Orhanlı, Tuzla, Istanbul, Turkey

2. 

School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand

* Corresponding author: Geertrui Van de Voorde

Received  January 2020 Revised  May 2020 Published  July 2020

Locally Repairable Codes (LRC's) based on generalised quadrangles were introduced by Pamies-Juarez, Hollmann and Oggier in [3], and bounds on the repairability and availability were derived. In this paper, we determine the values of the repairability and availability of such LRC's for a large portion of the currently known generalised quadrangles. In order to do so, we determine the minimum weight of the codes of translation generalised quadrangles and characterise the codewords of minimum weight.

Citation: Michel Lavrauw, Geertrui Van de Voorde. Locally repairable codes with high availability based on generalised quadrangles. Advances in Mathematics of Communications, doi: 10.3934/amc.2020099
References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

B. Bagchi and N. S. N. Sastry, Codes associated with generalized polygons, Geom. Dedicata, 27 (1988), 1-8.  doi: 10.1007/BF00181609.  Google Scholar

[3]

L. Pamies-Juarez, H. D. L. Hollmann and F. Oggier, Locally repairable codes with multiple repair alternatives, In IEEE International Symposium on Information Theory - Proceedings (ISIT), 2013,892–896. doi: 10.1109/ISIT.2013.6620355.  Google Scholar

[4]

P. DelsarteJ. M. Goethals and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Information and Control, 16 (1970), 403-442.  doi: 10.1016/S0019-9958(70)90214-7.  Google Scholar

[5]

P. GopalanC. HuangH. Simitci and and S. Yekhanin, On the locality of codeword symbols, IEEE Trans. Inform. Theory, 58 (2012), 6925-6934.  doi: 10.1109/TIT.2012.2208937.  Google Scholar

[6]

S. J. Johnson and S. R. Weller, Codes for iterative decoding from partial geometries, IEEE Trans. Comm., 52 (2004), 236-243.  doi: 10.1109/ISIT.2002.1023582.  Google Scholar

[7]

T. Kasami and N. Tokura, On the weight structure of Reed-Muller codes, IEEE Trans. Inf. Theory, 16 (1970), 752-759.  doi: 10.1109/tit.1970.1054545.  Google Scholar

[8]

J. L. KimK. E. Mellinger and L. Storme, Small weight codewords in LDPC codes defined by (dual) classical generalised quadrangles, Des. Codes Cryptogr., 42 (2007), 73-92.  doi: 10.1007/s10623-006-9017-6.  Google Scholar

[9]

M. Lavrauw, Scattered Subspaces with Respect to Spreads and Eggs in Finite Projective Spaces, PhD thesis, Technical University of Eindhoven, The Netherlands, 2001.  Google Scholar

[10]

M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in Finite Fields, Contemp. Math., volume 632, Amer. Math. Soc., Providence, RI, 2015,271–293. doi: 10.1090/conm/632/12633.  Google Scholar

[11]

S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman Advanced Publishing Program, Boston, MA, 1984.  Google Scholar

[12]

V. PepeL. Storme and G. Van de Voorde, Small weight codewords in the LDPC codes arising from linear representations of geometries, J. Combin. Des., 17 (2009), 1-24.  doi: 10.1002/jcd.20179.  Google Scholar

[13]

R. Rolland, The second weight of generalized Reed–Muller codes in most cases, Cryptogr. Commun., 2 (2010), 19-40.  doi: 10.1007/s12095-009-0014-2.  Google Scholar

[14]

I. TamoA. Barg and A. Frolov, Bounds on the parameters of locally recoverable codes, IEEE Trans. Inform. Theory, 62 (2016), 3070-3083.  doi: 10.1109/TIT.2016.2518663.  Google Scholar

[15]

G. Van de Voorde, Blocking Sets in Finite Projective Spaces and Coding Theory, PhD thesis, Ghent University, Belgium, 2010. Google Scholar

show all references

References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

B. Bagchi and N. S. N. Sastry, Codes associated with generalized polygons, Geom. Dedicata, 27 (1988), 1-8.  doi: 10.1007/BF00181609.  Google Scholar

[3]

L. Pamies-Juarez, H. D. L. Hollmann and F. Oggier, Locally repairable codes with multiple repair alternatives, In IEEE International Symposium on Information Theory - Proceedings (ISIT), 2013,892–896. doi: 10.1109/ISIT.2013.6620355.  Google Scholar

[4]

P. DelsarteJ. M. Goethals and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Information and Control, 16 (1970), 403-442.  doi: 10.1016/S0019-9958(70)90214-7.  Google Scholar

[5]

P. GopalanC. HuangH. Simitci and and S. Yekhanin, On the locality of codeword symbols, IEEE Trans. Inform. Theory, 58 (2012), 6925-6934.  doi: 10.1109/TIT.2012.2208937.  Google Scholar

[6]

S. J. Johnson and S. R. Weller, Codes for iterative decoding from partial geometries, IEEE Trans. Comm., 52 (2004), 236-243.  doi: 10.1109/ISIT.2002.1023582.  Google Scholar

[7]

T. Kasami and N. Tokura, On the weight structure of Reed-Muller codes, IEEE Trans. Inf. Theory, 16 (1970), 752-759.  doi: 10.1109/tit.1970.1054545.  Google Scholar

[8]

J. L. KimK. E. Mellinger and L. Storme, Small weight codewords in LDPC codes defined by (dual) classical generalised quadrangles, Des. Codes Cryptogr., 42 (2007), 73-92.  doi: 10.1007/s10623-006-9017-6.  Google Scholar

[9]

M. Lavrauw, Scattered Subspaces with Respect to Spreads and Eggs in Finite Projective Spaces, PhD thesis, Technical University of Eindhoven, The Netherlands, 2001.  Google Scholar

[10]

M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in Finite Fields, Contemp. Math., volume 632, Amer. Math. Soc., Providence, RI, 2015,271–293. doi: 10.1090/conm/632/12633.  Google Scholar

[11]

S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman Advanced Publishing Program, Boston, MA, 1984.  Google Scholar

[12]

V. PepeL. Storme and G. Van de Voorde, Small weight codewords in the LDPC codes arising from linear representations of geometries, J. Combin. Des., 17 (2009), 1-24.  doi: 10.1002/jcd.20179.  Google Scholar

[13]

R. Rolland, The second weight of generalized Reed–Muller codes in most cases, Cryptogr. Commun., 2 (2010), 19-40.  doi: 10.1007/s12095-009-0014-2.  Google Scholar

[14]

I. TamoA. Barg and A. Frolov, Bounds on the parameters of locally recoverable codes, IEEE Trans. Inform. Theory, 62 (2016), 3070-3083.  doi: 10.1109/TIT.2016.2518663.  Google Scholar

[15]

G. Van de Voorde, Blocking Sets in Finite Projective Spaces and Coding Theory, PhD thesis, Ghent University, Belgium, 2010. Google Scholar

[1]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[4]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[5]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[8]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[9]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[10]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[11]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[12]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[13]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[14]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[15]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[18]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

2019 Impact Factor: 0.734

Article outline

[Back to Top]