-
Previous Article
Rotated $ A_n $-lattice codes of full diversity
- AMC Home
- This Issue
-
Next Article
A New Construction of odd-variable Rotation symmetric Boolean functions with good cryptographic properties
On the diffusion of the Improved Generalized Feistel
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, P.O.Box 323, 5000 Veliko Tarnovo, Bulgaria |
We consider the Improved Generalized Feistel Structure (IGFS) suggested by Suzaki and Minematsu (LNCS, 2010). It is a generalization of the classical Feistel cipher. The message is divided into $ k $ subblocks, a Feistel transformation is applied to each pair of successive subblocks, and then a permutation of the subblocks follows. This permutation affects the diffusion property of the cipher. IGFS with relatively big $ k $ and good diffusion are of particular interest for light weight applications.
Suzaki and Minematsu (LNCS, 2010) study the case when one and the same permutation is applied at each round, while we consider IGFS with possibly different permutations at the different rounds. In this case we present permutation sequences yielding IGFS with the best known by now diffusion for all even $ k\le 2048 $. For $ k\le 16 $ they are found by a computer-aided search, while for $ 18\le k\le 2048 $ we first consider several recursive constructions of a permutation sequence for $ k $ subblocks from two permutation sequences for $ k_a< k $ and $ k_b< k $ subblocks respectively. Using computer, we apply these constructions to obtain permutation sequences with good diffusion for each even $ k\le 2048 $. Finally we obtain infinite families of permutation sequences for $ k>2048 $.
References:
[1] |
T. Baicheva and S. Topalova, On the diffusion property of the Improved Generalized Feistel with different permutations for each round, in Algebraic Informatics, CAI 2019 (eds. M. Ćirić, M. Droste and J.É. Pin), Lecture Notes in Computer Science, 11545 (2019), 38–49.
doi: 10.1007/978-3-030-21363-3_4. |
[2] |
T. Berger, M. Minier and G. Thomas, Extended generalized Feistel networks using matrix representation, Selected Areas in Cryptography–SAC 2013, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8282 (2014), 289–305.
doi: 10.1007/978-3-662-43414-7_15. |
[3] |
T. Berger, J. Francq, M. Minier and G. Thomas,
Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput, IEEE Transactions on Computers, 65 (2016), 2074-2089.
doi: 10.1109/TC.2015.2468218. |
[4] |
D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim and S. Chee,
HIGHT: A new block cipher suitable for low-resource device, Lecture Notes in Computer Science - CHES, 4249 (2006), 46-59.
doi: 10.1007/11894063_4. |
[5] |
K. Nyberg, Generalized Feistel networks, in Advances in Cryptology - ASIACRYPT '96 (eds. K. Kim and T. Matsumoto), Lecture Notes in Computer Science, 1163 (1996), 90–104.
doi: 10.1007/BFb0034838. |
[6] |
R. L. Rivest, M. J. B. Robshaw, R. Sidney and Y. L. Yin, The RC6 block cipher, August 1998. Available from: http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf. Google Scholar |
[7] |
C. E. Shannon,
Communication theory of secrecy systems, Bell System Technical Journal, 28 (1949), 656-715.
doi: 10.1002/j.1538-7305.1949.tb00928.x. |
[8] |
T. Shirai, K. Shibutani, T. Akishita, S. Moriai and T. Iwata, The 128-bit block cipher CLEFIA (Extended abstract), Lecture Notes in Computer Science–FSE, 4593 (2007), 181-195. Google Scholar |
[9] |
T. Suzaki and K. Minematsu,
Improving the generalized Feistel, Lecture Notes in Computer Science–FSE, 6147 (2010), 19-39.
doi: 10.1007/978-3-642-13858-4_2. |
[10] |
L. Zhang and W. Wu,
Analysis of permutation choices for enhanced generalised Feistel structure with SP-type round function, IET Information Security, 11 (2017), 121-128.
doi: 10.1049/iet-ifs.2015.0433. |
[11] |
Y. Zheng, T. Matsumoto and H. Imai, On the construction of block ciphers provably secure and not relying on any unproved hypothesis, Advances in Cryptology - CRYPTO'89, Lecture Notes in Computer Science, 435 (1990), 461–480.
doi: 10.1007/0-387-34805-0_42. |
[12] |
Y. Wang and W. Wu,
New criterion for diffusion property and applications to improved GFS and EGFN, Designs Codes and Cryptography, 81 (2016), 393-412.
doi: 10.1007/s10623-015-0161-8. |
show all references
References:
[1] |
T. Baicheva and S. Topalova, On the diffusion property of the Improved Generalized Feistel with different permutations for each round, in Algebraic Informatics, CAI 2019 (eds. M. Ćirić, M. Droste and J.É. Pin), Lecture Notes in Computer Science, 11545 (2019), 38–49.
doi: 10.1007/978-3-030-21363-3_4. |
[2] |
T. Berger, M. Minier and G. Thomas, Extended generalized Feistel networks using matrix representation, Selected Areas in Cryptography–SAC 2013, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8282 (2014), 289–305.
doi: 10.1007/978-3-662-43414-7_15. |
[3] |
T. Berger, J. Francq, M. Minier and G. Thomas,
Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput, IEEE Transactions on Computers, 65 (2016), 2074-2089.
doi: 10.1109/TC.2015.2468218. |
[4] |
D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim and S. Chee,
HIGHT: A new block cipher suitable for low-resource device, Lecture Notes in Computer Science - CHES, 4249 (2006), 46-59.
doi: 10.1007/11894063_4. |
[5] |
K. Nyberg, Generalized Feistel networks, in Advances in Cryptology - ASIACRYPT '96 (eds. K. Kim and T. Matsumoto), Lecture Notes in Computer Science, 1163 (1996), 90–104.
doi: 10.1007/BFb0034838. |
[6] |
R. L. Rivest, M. J. B. Robshaw, R. Sidney and Y. L. Yin, The RC6 block cipher, August 1998. Available from: http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf. Google Scholar |
[7] |
C. E. Shannon,
Communication theory of secrecy systems, Bell System Technical Journal, 28 (1949), 656-715.
doi: 10.1002/j.1538-7305.1949.tb00928.x. |
[8] |
T. Shirai, K. Shibutani, T. Akishita, S. Moriai and T. Iwata, The 128-bit block cipher CLEFIA (Extended abstract), Lecture Notes in Computer Science–FSE, 4593 (2007), 181-195. Google Scholar |
[9] |
T. Suzaki and K. Minematsu,
Improving the generalized Feistel, Lecture Notes in Computer Science–FSE, 6147 (2010), 19-39.
doi: 10.1007/978-3-642-13858-4_2. |
[10] |
L. Zhang and W. Wu,
Analysis of permutation choices for enhanced generalised Feistel structure with SP-type round function, IET Information Security, 11 (2017), 121-128.
doi: 10.1049/iet-ifs.2015.0433. |
[11] |
Y. Zheng, T. Matsumoto and H. Imai, On the construction of block ciphers provably secure and not relying on any unproved hypothesis, Advances in Cryptology - CRYPTO'89, Lecture Notes in Computer Science, 435 (1990), 461–480.
doi: 10.1007/0-387-34805-0_42. |
[12] |
Y. Wang and W. Wu,
New criterion for diffusion property and applications to improved GFS and EGFN, Designs Codes and Cryptography, 81 (2016), 393-412.
doi: 10.1007/s10623-015-0161-8. |
C | Remark | |||||
2 | 2 | 2 | c | - | 2 | |
4 | 4 | 4 | c | - | 4 | |
6 | 5 | 5 | c | - | 5 | |
8 | 6 | 6 | c | - | 6 | |
10 | 6 | 6 | c | - | 7 | |
12 | 7 | 7 | c | - | 8 | |
14 | 7 | 7 | c | - | 8 | |
16 | 7 | 7 | c | - | 8 | |
18 | 8 | 8 | 2 | 2.3.3 | - | |
20 | 8 | 8 | 1 | 2.10 | - | |
22 | 9 | 8 | 5 | 10+12 | - | |
24 | 9 | 8 | 1 | 2.12 | - | |
26 | 10 | 8 | 3 | 12+14 | - | |
28 | 9 | 9 | 1 | 2.14 | - | |
30 | 9 | 9 | 2 | 2.3.5 | - | |
32 | 9 | 9 | 1 | 2.16 | 10 | |
34 | 10 | 9 | 4 | 16+18 | - | |
36 | 10 | 9 | 1 | 2.18 | - | |
38 | 11 | 9 | 3 | 18+20 | - | |
40 | 10 | 9 | 1 | 2.20 | - | |
42 | 10 | 9 | 2 | 2.3.7 | - | |
44 | 11 | 10 | 1 | 2.22 | - | |
46 | 12 | 10 | 3 | 22+24 | - | |
48 | 10 | 10 | 2 | 2.3.8 | - | |
50 | 10 | 10 | 2 | 2.5.5 | - | |
52 | 12 | 10 | 1 | 2.26 | - | |
54 | 11 | 10 | 2 | 2.3.9 | - | |
56 | 11 | 10 | 1 | 2.28 | - | |
58 | 12 | 10 | 3 | 28+30 | - | |
60 | 11 | 10 | 1 | 2.30 | - | |
62 | 12 | 10 | 3 | 30+32 | - | |
64 | 11 | 10 | 1 | 2.32 | 12 | |
66 | 12 | 10 | 2 | 2.3.11 | - | |
68 | 12 | 10 | 1 | 2.34 | - | |
* | 70 | 11 | 11 | 2 | 2.5.7 | - |
72 | 12 | 11 | 1 | 2.36 | - | |
74 | 13 | 11 | 4 | 36+38 | - | |
76 | 13 | 11 | 1 | 2.38 | - | |
78 | 13 | 11 | 2 | 2.3.13 | - | |
* | 80 | 11 | 11 | 2 | 2.5.8 | - |
82 | 13 | 11 | 3 | 40+42 | - | |
84 | 12 | 11 | 1 | 2.42 | - | |
86 | 13 | 11 | 5 | 42+44 | - | |
88 | 13 | 11 | 1 | 2.44 | - | |
90 | 12 | 11 | 2 | 2.3.15 | - | |
92 | 14 | 11 | 1 | 2.46 | - | |
94 | 14 | 11 | 6 | 46+48 | - | |
96 | 12 | 11 | 1 | 2.48 | - | |
98 | 12 | 11 | 2 | 2.7.7 | - | |
100 | 12 | 11 | 1 | 2.50 | - | |
102 | 13 | 11 | 2 | 2.3.17 | - | |
104 | 14 | 11 | 1 | 2.52 | - | |
106 | 15 | 11 | 3 | 52+54 | - | |
108 | 13 | 11 | 1 | 2.54 | - | |
110 | 13 | 11 | 2 | 2.5.11 | - | |
* | 112 | 12 | 12 | 2 | 2.7.8 | - |
114 | 14 | 12 | 2 | 2.3.19 | - | |
116 | 14 | 12 | 1 | 2.58 | - | |
118 | 14 | 12 | 6 | 58+60 | - | |
120 | 13 | 12 | 1 | 2.60 | - | |
122 | 14 | 12 | 4 | 60+62 | - | |
124 | 14 | 12 | 1 | 2.62 | - | |
126 | 13 | 12 | 2 | 2.3.21 | - | |
* | 128 | 12 | 12 | 2 | 2.8.8 | 14 |
C | Remark | |||||
2 | 2 | 2 | c | - | 2 | |
4 | 4 | 4 | c | - | 4 | |
6 | 5 | 5 | c | - | 5 | |
8 | 6 | 6 | c | - | 6 | |
10 | 6 | 6 | c | - | 7 | |
12 | 7 | 7 | c | - | 8 | |
14 | 7 | 7 | c | - | 8 | |
16 | 7 | 7 | c | - | 8 | |
18 | 8 | 8 | 2 | 2.3.3 | - | |
20 | 8 | 8 | 1 | 2.10 | - | |
22 | 9 | 8 | 5 | 10+12 | - | |
24 | 9 | 8 | 1 | 2.12 | - | |
26 | 10 | 8 | 3 | 12+14 | - | |
28 | 9 | 9 | 1 | 2.14 | - | |
30 | 9 | 9 | 2 | 2.3.5 | - | |
32 | 9 | 9 | 1 | 2.16 | 10 | |
34 | 10 | 9 | 4 | 16+18 | - | |
36 | 10 | 9 | 1 | 2.18 | - | |
38 | 11 | 9 | 3 | 18+20 | - | |
40 | 10 | 9 | 1 | 2.20 | - | |
42 | 10 | 9 | 2 | 2.3.7 | - | |
44 | 11 | 10 | 1 | 2.22 | - | |
46 | 12 | 10 | 3 | 22+24 | - | |
48 | 10 | 10 | 2 | 2.3.8 | - | |
50 | 10 | 10 | 2 | 2.5.5 | - | |
52 | 12 | 10 | 1 | 2.26 | - | |
54 | 11 | 10 | 2 | 2.3.9 | - | |
56 | 11 | 10 | 1 | 2.28 | - | |
58 | 12 | 10 | 3 | 28+30 | - | |
60 | 11 | 10 | 1 | 2.30 | - | |
62 | 12 | 10 | 3 | 30+32 | - | |
64 | 11 | 10 | 1 | 2.32 | 12 | |
66 | 12 | 10 | 2 | 2.3.11 | - | |
68 | 12 | 10 | 1 | 2.34 | - | |
* | 70 | 11 | 11 | 2 | 2.5.7 | - |
72 | 12 | 11 | 1 | 2.36 | - | |
74 | 13 | 11 | 4 | 36+38 | - | |
76 | 13 | 11 | 1 | 2.38 | - | |
78 | 13 | 11 | 2 | 2.3.13 | - | |
* | 80 | 11 | 11 | 2 | 2.5.8 | - |
82 | 13 | 11 | 3 | 40+42 | - | |
84 | 12 | 11 | 1 | 2.42 | - | |
86 | 13 | 11 | 5 | 42+44 | - | |
88 | 13 | 11 | 1 | 2.44 | - | |
90 | 12 | 11 | 2 | 2.3.15 | - | |
92 | 14 | 11 | 1 | 2.46 | - | |
94 | 14 | 11 | 6 | 46+48 | - | |
96 | 12 | 11 | 1 | 2.48 | - | |
98 | 12 | 11 | 2 | 2.7.7 | - | |
100 | 12 | 11 | 1 | 2.50 | - | |
102 | 13 | 11 | 2 | 2.3.17 | - | |
104 | 14 | 11 | 1 | 2.52 | - | |
106 | 15 | 11 | 3 | 52+54 | - | |
108 | 13 | 11 | 1 | 2.54 | - | |
110 | 13 | 11 | 2 | 2.5.11 | - | |
* | 112 | 12 | 12 | 2 | 2.7.8 | - |
114 | 14 | 12 | 2 | 2.3.19 | - | |
116 | 14 | 12 | 1 | 2.58 | - | |
118 | 14 | 12 | 6 | 58+60 | - | |
120 | 13 | 12 | 1 | 2.60 | - | |
122 | 14 | 12 | 4 | 60+62 | - | |
124 | 14 | 12 | 1 | 2.62 | - | |
126 | 13 | 12 | 2 | 2.3.21 | - | |
* | 128 | 12 | 12 | 2 | 2.8.8 | 14 |
C | Remark | ||||
140 | 13 | 12 | 1 | 2.70 | - |
144 | 13 | 12 | 2 | 2.3.24 | - |
150 | 13 | 12 | 2 | 2.3.25 | - |
160 | 13 | 12 | 1 | 2.80 | - |
180 | 14 | 13 | 1 | 2.90 | - |
192 | 14 | 13 | 1 | 2.96 | - |
196 | 14 | 13 | 1 | 2.98 | - |
200 | 14 | 13 | 1 | 2.100 | - |
210 | 14 | 13 | 2 | 2.3.35 | - |
224 | 14 | 13 | 1 | 2.112 | - |
240 | 14 | 13 | 2 | 2.3.40 | - |
250 | 14 | 13 | 2 | 2.5.25 | - |
256 | 14 | 13 | 1 | 2.128 | 16 |
294 | 15 | 14 | 2 | 2.3.49 | - |
300 | 15 | 14 | 1 | 2.150 | - |
320 | 15 | 14 | 1 | 2.160 | - |
336 | 15 | 14 | 2 | 2.3.56 | - |
350 | 15 | 14 | 2 | 2.5.35 | - |
384 | 15 | 14 | 2 | 2.3.64 | - |
400 | 15 | 14 | 2 | 2.5.40 | - |
480 | 16 | 15 | 1 | 2.240 | - |
490 | 16 | 15 | 2 | 2.5.49 | - |
500 | 16 | 15 | 1 | 2.250 | - |
512 | 16 | 15 | 1 | 2.256 | 18 |
560 | 16 | 15 | 2 | 2.5.56 | - |
640 | 16 | 15 | 2 | 2.5.64 | - |
768 | 17 | 16 | 1 | 2.384 | - |
784 | 17 | 16 | 2 | 2.7.56 | - |
800 | 17 | 16 | 1 | 2.400 | - |
896 | 17 | 16 | 2 | 2.7.64 | - |
1024 | 17 | 16 | 2 | 2.8.64 | 20 |
1250 | 18 | 17 | 2 | 2.5.125 | - |
1280 | 18 | 17 | 1 | 2.640 | - |
2000 | 19 | 18 | 2 | 2.5.200 | - |
2048 | 19 | 18 | 1 | 2.1024 | 22 |
C | Remark | ||||
140 | 13 | 12 | 1 | 2.70 | - |
144 | 13 | 12 | 2 | 2.3.24 | - |
150 | 13 | 12 | 2 | 2.3.25 | - |
160 | 13 | 12 | 1 | 2.80 | - |
180 | 14 | 13 | 1 | 2.90 | - |
192 | 14 | 13 | 1 | 2.96 | - |
196 | 14 | 13 | 1 | 2.98 | - |
200 | 14 | 13 | 1 | 2.100 | - |
210 | 14 | 13 | 2 | 2.3.35 | - |
224 | 14 | 13 | 1 | 2.112 | - |
240 | 14 | 13 | 2 | 2.3.40 | - |
250 | 14 | 13 | 2 | 2.5.25 | - |
256 | 14 | 13 | 1 | 2.128 | 16 |
294 | 15 | 14 | 2 | 2.3.49 | - |
300 | 15 | 14 | 1 | 2.150 | - |
320 | 15 | 14 | 1 | 2.160 | - |
336 | 15 | 14 | 2 | 2.3.56 | - |
350 | 15 | 14 | 2 | 2.5.35 | - |
384 | 15 | 14 | 2 | 2.3.64 | - |
400 | 15 | 14 | 2 | 2.5.40 | - |
480 | 16 | 15 | 1 | 2.240 | - |
490 | 16 | 15 | 2 | 2.5.49 | - |
500 | 16 | 15 | 1 | 2.250 | - |
512 | 16 | 15 | 1 | 2.256 | 18 |
560 | 16 | 15 | 2 | 2.5.56 | - |
640 | 16 | 15 | 2 | 2.5.64 | - |
768 | 17 | 16 | 1 | 2.384 | - |
784 | 17 | 16 | 2 | 2.7.56 | - |
800 | 17 | 16 | 1 | 2.400 | - |
896 | 17 | 16 | 2 | 2.7.64 | - |
1024 | 17 | 16 | 2 | 2.8.64 | 20 |
1250 | 18 | 17 | 2 | 2.5.125 | - |
1280 | 18 | 17 | 1 | 2.640 | - |
2000 | 19 | 18 | 2 | 2.5.200 | - |
2048 | 19 | 18 | 1 | 2.1024 | 22 |
[1] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[2] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[3] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[4] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[5] |
Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021016 |
[6] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[7] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[8] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[9] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[10] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[11] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[12] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[13] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[14] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[15] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[16] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[17] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[18] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[19] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286 |
[20] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
2019 Impact Factor: 0.734
Tools
Article outline
Figures and Tables
[Back to Top]