doi: 10.3934/amc.2020105
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Orbit codes from forms on vector spaces over a finite field

1. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, I-70126, Italy

2. 

Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Potenza, I-85100, Italy

3. 

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli "Federico II", Napoli, I-80138, Italy

* Corresponding author: Francesco Pavese

Received  April 2020 Revised  July 2020 Early access August 2020

Fund Project: The research was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM)

In this paper we construct different families of orbit codes in the vector spaces of the symmetric bilinear forms, quadratic forms and Hermitian forms on an $ n $-dimensional vector space over the finite field $ {\mathbb F_{q}} $. All these codes admit the general linear group $ {{{{\rm{GL}}}}}(n,q) $ as a transitive automorphism group.

Citation: Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, doi: 10.3934/amc.2020105
References:
[1]

R. AhlswedeN. CaiS.-Y. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.  doi: 10.1109/18.850663.  Google Scholar

[2] M. Aschbacher, Finite Group Theory, Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 1986.   Google Scholar
[3]

E. Ben-SassonT. EtzionA. Gabizon and N. Raviv, Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62 (2016), 1157-1165.  doi: 10.1109/TIT.2016.2520479.  Google Scholar

[4]

O. Bottema, On the Betti-Mathieu group, Nieuw Arch. Wisk., 16 (1930), 46-50.   Google Scholar

[5]

M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of $q$–analogs of Steiner systems, Forum Math. Pi, 4 (2016), e7, 14 pp. doi: 10.1017/fmp.2016.5.  Google Scholar

[6]

L. Carlitz, A Note on the Betti-Mathieu group, Portugaliae mathematica, 22 (1963), 121-125.   Google Scholar

[7]

B. Chen and H. Liu, Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86 (2018), 1267-1279.  doi: 10.1007/s10623-017-0394-9.  Google Scholar

[8]

J.-J. ClimentV. Requena and X. Soler-Escrivà, A construction of Abelian non-cyclic orbit codes, Cryptography and Communication, 11 (2019), 839-852.  doi: 10.1007/s12095-018-0306-5.  Google Scholar

[9]

B. N. Cooperstein, External flats to varieties in ${{{\rm PG}}}(M_{n, n}({{{\rm GF}}}(q)))$, Linear Algebra Appl., 267 (1997), 175-186.   Google Scholar

[10]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531.  doi: 10.1007/s10623-014-0018-6.  Google Scholar

[11]

A. Cossidente and F. Pavese, Veronese subspace codes, Des. Codes Cryptogr., 81 (2016), 445-457.  doi: 10.1007/s10623-015-0166-3.  Google Scholar

[12]

A. Cossidente and F. Pavese, Subspace codes in ${{{\rm PG}}}(2n-1, q)$, Combinatorica, 37 (2017), 1073-1095.  doi: 10.1007/s00493-016-3354-5.  Google Scholar

[13]

A. Cossidente, F. Pavese and L. Storme, Geometrical aspects of subspace codes, in Network Coding and Subspace Designs, 107–129, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[14]

A. CossidenteF. Pavese and L. Storme, Optimal subspace codes in ${{{\rm PG}}}(4, q)$, Adv. Math. Commun., 13 (2019), 393-404.  doi: 10.3934/amc.2019025.  Google Scholar

[15]

A. Cossidente, S. Kurz, G. Marino and F. Pavese, Combining subspace codes, preprint, arXiv: 1911.03387. Google Scholar

[16]

B. Csajbók and A. Siciliano, Puncturing maximum rank distance codes, J. Algebraic Combin., 49 (2019), 507-534.  doi: 10.1007/s10801-018-0833-3.  Google Scholar

[17]

P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-New York, 1968.  Google Scholar

[18]

N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Combin., 24 (2017), 18 pp.  Google Scholar

[19]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank- metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[20]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017.  doi: 10.1109/TIT.2012.2220119.  Google Scholar

[21]

T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.  doi: 10.1109/TIT.2010.2095232.  Google Scholar

[22]

G. FainaG. KissS. Marcugini and F. Pambianco, The cyclic model for ${{{\rm PG}}}(n-1, q)$ and a construction of arcs, European J. Combin., 23 (2002), 31-35.  doi: 10.1006/eujc.2001.0525.  Google Scholar

[23]

H. Gluesing-LuerssenK. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9 (2015), 177-197.  doi: 10.3934/amc.2015.9.177.  Google Scholar

[24]

H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Adv. Math. Commun., 10 (2016), 525-540.  doi: 10.3934/amc.2016023.  Google Scholar

[25]

D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, preprint, arXiv: 1601.02864, 2016. Google Scholar

[26] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd ed, Clarendon Press, Oxford, 1998.   Google Scholar
[27]

T. HoM. MédardR. KoetterD. R. KargerM. EffrosJ. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.  doi: 10.1109/TIT.2006.881746.  Google Scholar

[28]

T. Ho, R. Koetter, M. Médard, D. R. Karger and M. Effros, The benefits of coding over routing in a randomized setting, in Proceedings of the 2003 IEEE international symposium on information theory (ISIT 2003), Yokohama, Japan. IEEE, (2003), p442. doi: 10.1109/ISIT.2003.1228459.  Google Scholar

[29]

T. Honold, M. Kiermaier and S. Kurz, Partial spreads and vector space partitions, in Network Coding and Subspace Designs, 131–170, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[30]

A.-L. Horlemann-Trautmann, Message encoding and retrieval for spread and cyclic orbit codes, Des. Codes Cryptogr., 86 (2018), 365-386.  doi: 10.1007/s10623-017-0377-x.  Google Scholar

[31]

A. L. Horlemann-Trautmann and J. Rosenthal, Constructions of constant dimension codes, in Network Coding and Subspace Designs, 25–42, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[32]

B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.  Google Scholar

[33]

W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra, 62 (1980), 232-234.  doi: 10.1016/0021-8693(80)90214-8.  Google Scholar

[34]

B. C. Kestenband, Finite projective geometries that are incidence structures of caps, Linear Algebra Appl., 48 (1982), 303-313.  doi: 10.1016/0024-3795(82)90116-1.  Google Scholar

[35]

A. Kohnert and S. Kurz, Construction of large constant-dimension codes with a prescribed minimum distance, Lecture Notes in Computer Science, 5393 (2008), 31-42.  doi: 10.1007/978-3-540-89994-5_4.  Google Scholar

[36]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[37] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar
[38]

K. Otal and F. Özbudak, Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85 (2017), 191-204.  doi: 10.1007/s10623-016-0297-1.  Google Scholar

[39]

K. Otal and F. Özbudak, Constructions of cyclic subspace codes and maximum rank distance codes, in Network Coding and Subspace Designs, 43–66, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[40]

M. H. Poroch and A. A. Talebi, Product of symplectic groups and its cyclic orbit code, Discrete Math. Algorithms Appl., 11 (2019), 1950061, 25 pp. doi: 10.1142/s1793830919500617.  Google Scholar

[41]

N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, 61 (2015), 3937-3953.  doi: 10.1109/TIT.2015.2435743.  Google Scholar

[42]

D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[43]

J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377-385.  doi: 10.1090/S0002-9947-1938-1501951-4.  Google Scholar

[44]

A.-L. Trautmann, Isometry and automorphisms of constant dimension codes, Adv. Math. Commun., 7 (2013), 147-160.  doi: 10.3934/amc.2013.7.147.  Google Scholar

[45]

A.-L. TrautmannF. ManganielloM. Braun and J. Rosenthal, Cyclic orbit codes, IEEE Trans. Inf. Theory, 59 (2013), 7386-7404.  doi: 10.1109/TIT.2013.2274266.  Google Scholar

[46]

A.-L. Trautmann, F. Manganiello and J. Rosenthal, Orbit codes - a new concept in the area of network coding, in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland, 2010, 1–4. doi: 10.1109/CIG.2010.5592788.  Google Scholar

[47]

D. E. Taylor, The Geometry of the Classical Groups, Sigma Series in Pure Mathematics, 9. Heldermann Verlag, Berlin, 1992.  Google Scholar

[48]

Z.-X. Wan, Geometry of matrices, World Scientific Publishing Co. NJ, 1996. doi: 10.1142/9789812830234.  Google Scholar

[49]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[50]

S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes, Des. Codes Cryptogr., 50 (2009), 163-172.  doi: 10.1007/s10623-008-9221-7.  Google Scholar

show all references

References:
[1]

R. AhlswedeN. CaiS.-Y. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.  doi: 10.1109/18.850663.  Google Scholar

[2] M. Aschbacher, Finite Group Theory, Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 1986.   Google Scholar
[3]

E. Ben-SassonT. EtzionA. Gabizon and N. Raviv, Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62 (2016), 1157-1165.  doi: 10.1109/TIT.2016.2520479.  Google Scholar

[4]

O. Bottema, On the Betti-Mathieu group, Nieuw Arch. Wisk., 16 (1930), 46-50.   Google Scholar

[5]

M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of $q$–analogs of Steiner systems, Forum Math. Pi, 4 (2016), e7, 14 pp. doi: 10.1017/fmp.2016.5.  Google Scholar

[6]

L. Carlitz, A Note on the Betti-Mathieu group, Portugaliae mathematica, 22 (1963), 121-125.   Google Scholar

[7]

B. Chen and H. Liu, Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86 (2018), 1267-1279.  doi: 10.1007/s10623-017-0394-9.  Google Scholar

[8]

J.-J. ClimentV. Requena and X. Soler-Escrivà, A construction of Abelian non-cyclic orbit codes, Cryptography and Communication, 11 (2019), 839-852.  doi: 10.1007/s12095-018-0306-5.  Google Scholar

[9]

B. N. Cooperstein, External flats to varieties in ${{{\rm PG}}}(M_{n, n}({{{\rm GF}}}(q)))$, Linear Algebra Appl., 267 (1997), 175-186.   Google Scholar

[10]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531.  doi: 10.1007/s10623-014-0018-6.  Google Scholar

[11]

A. Cossidente and F. Pavese, Veronese subspace codes, Des. Codes Cryptogr., 81 (2016), 445-457.  doi: 10.1007/s10623-015-0166-3.  Google Scholar

[12]

A. Cossidente and F. Pavese, Subspace codes in ${{{\rm PG}}}(2n-1, q)$, Combinatorica, 37 (2017), 1073-1095.  doi: 10.1007/s00493-016-3354-5.  Google Scholar

[13]

A. Cossidente, F. Pavese and L. Storme, Geometrical aspects of subspace codes, in Network Coding and Subspace Designs, 107–129, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[14]

A. CossidenteF. Pavese and L. Storme, Optimal subspace codes in ${{{\rm PG}}}(4, q)$, Adv. Math. Commun., 13 (2019), 393-404.  doi: 10.3934/amc.2019025.  Google Scholar

[15]

A. Cossidente, S. Kurz, G. Marino and F. Pavese, Combining subspace codes, preprint, arXiv: 1911.03387. Google Scholar

[16]

B. Csajbók and A. Siciliano, Puncturing maximum rank distance codes, J. Algebraic Combin., 49 (2019), 507-534.  doi: 10.1007/s10801-018-0833-3.  Google Scholar

[17]

P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-New York, 1968.  Google Scholar

[18]

N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Combin., 24 (2017), 18 pp.  Google Scholar

[19]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank- metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[20]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017.  doi: 10.1109/TIT.2012.2220119.  Google Scholar

[21]

T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.  doi: 10.1109/TIT.2010.2095232.  Google Scholar

[22]

G. FainaG. KissS. Marcugini and F. Pambianco, The cyclic model for ${{{\rm PG}}}(n-1, q)$ and a construction of arcs, European J. Combin., 23 (2002), 31-35.  doi: 10.1006/eujc.2001.0525.  Google Scholar

[23]

H. Gluesing-LuerssenK. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9 (2015), 177-197.  doi: 10.3934/amc.2015.9.177.  Google Scholar

[24]

H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Adv. Math. Commun., 10 (2016), 525-540.  doi: 10.3934/amc.2016023.  Google Scholar

[25]

D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, preprint, arXiv: 1601.02864, 2016. Google Scholar

[26] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd ed, Clarendon Press, Oxford, 1998.   Google Scholar
[27]

T. HoM. MédardR. KoetterD. R. KargerM. EffrosJ. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.  doi: 10.1109/TIT.2006.881746.  Google Scholar

[28]

T. Ho, R. Koetter, M. Médard, D. R. Karger and M. Effros, The benefits of coding over routing in a randomized setting, in Proceedings of the 2003 IEEE international symposium on information theory (ISIT 2003), Yokohama, Japan. IEEE, (2003), p442. doi: 10.1109/ISIT.2003.1228459.  Google Scholar

[29]

T. Honold, M. Kiermaier and S. Kurz, Partial spreads and vector space partitions, in Network Coding and Subspace Designs, 131–170, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[30]

A.-L. Horlemann-Trautmann, Message encoding and retrieval for spread and cyclic orbit codes, Des. Codes Cryptogr., 86 (2018), 365-386.  doi: 10.1007/s10623-017-0377-x.  Google Scholar

[31]

A. L. Horlemann-Trautmann and J. Rosenthal, Constructions of constant dimension codes, in Network Coding and Subspace Designs, 25–42, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[32]

B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.  Google Scholar

[33]

W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra, 62 (1980), 232-234.  doi: 10.1016/0021-8693(80)90214-8.  Google Scholar

[34]

B. C. Kestenband, Finite projective geometries that are incidence structures of caps, Linear Algebra Appl., 48 (1982), 303-313.  doi: 10.1016/0024-3795(82)90116-1.  Google Scholar

[35]

A. Kohnert and S. Kurz, Construction of large constant-dimension codes with a prescribed minimum distance, Lecture Notes in Computer Science, 5393 (2008), 31-42.  doi: 10.1007/978-3-540-89994-5_4.  Google Scholar

[36]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[37] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar
[38]

K. Otal and F. Özbudak, Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85 (2017), 191-204.  doi: 10.1007/s10623-016-0297-1.  Google Scholar

[39]

K. Otal and F. Özbudak, Constructions of cyclic subspace codes and maximum rank distance codes, in Network Coding and Subspace Designs, 43–66, Signals Commun. Technol., Springer, Cham, 2018.  Google Scholar

[40]

M. H. Poroch and A. A. Talebi, Product of symplectic groups and its cyclic orbit code, Discrete Math. Algorithms Appl., 11 (2019), 1950061, 25 pp. doi: 10.1142/s1793830919500617.  Google Scholar

[41]

N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, 61 (2015), 3937-3953.  doi: 10.1109/TIT.2015.2435743.  Google Scholar

[42]

D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[43]

J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377-385.  doi: 10.1090/S0002-9947-1938-1501951-4.  Google Scholar

[44]

A.-L. Trautmann, Isometry and automorphisms of constant dimension codes, Adv. Math. Commun., 7 (2013), 147-160.  doi: 10.3934/amc.2013.7.147.  Google Scholar

[45]

A.-L. TrautmannF. ManganielloM. Braun and J. Rosenthal, Cyclic orbit codes, IEEE Trans. Inf. Theory, 59 (2013), 7386-7404.  doi: 10.1109/TIT.2013.2274266.  Google Scholar

[46]

A.-L. Trautmann, F. Manganiello and J. Rosenthal, Orbit codes - a new concept in the area of network coding, in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland, 2010, 1–4. doi: 10.1109/CIG.2010.5592788.  Google Scholar

[47]

D. E. Taylor, The Geometry of the Classical Groups, Sigma Series in Pure Mathematics, 9. Heldermann Verlag, Berlin, 1992.  Google Scholar

[48]

Z.-X. Wan, Geometry of matrices, World Scientific Publishing Co. NJ, 1996. doi: 10.1142/9789812830234.  Google Scholar

[49]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[50]

S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes, Des. Codes Cryptogr., 50 (2009), 163-172.  doi: 10.1007/s10623-008-9221-7.  Google Scholar

[1]

María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018

[2]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[3]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[4]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[5]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[6]

Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $ \bf{333} $ in the setting of a binary $ \bf{q} $-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029

[7]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[8]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[9]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[10]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

[11]

Jorge P. Arpasi. On the non-Abelian group code capacity of memoryless channels. Advances in Mathematics of Communications, 2020, 14 (3) : 423-436. doi: 10.3934/amc.2020058

[12]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

[13]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[14]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149

[15]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[16]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[17]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[18]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[19]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[20]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

2020 Impact Factor: 0.935

Article outline

[Back to Top]