doi: 10.3934/amc.2020106

Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

Guangxi Key Laboratory of Cryptography and Information Security Guilin University of Electronic Technology Guilin, Guangxi 541004, China

3. 

School of Mathematics and Information, China West Normal University, Nanchong, Sichuan 637002, China

4. 

Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

* Corresponding author: Rong Wang

Received  May 2020 Published  August 2020

Fund Project: Xiaoni Du's research is supported by NSFC grant No. 61772022. Chunming Tang's research is supported by NSFC Grant No. 11871058. Qi Wang's research is supported by NSFC Grant No. 61672015

Combinatorial $ t $-designs have been an interesting topic in combinatorics for decades. It is a basic fact that the codewords of a fixed weight in a code may hold a $ t $-design. Till now only a small amount of work on constructing $ t $-designs from codes has been done. In this paper, we determine the weight distributions of two classes of cyclic codes: one related to the triple-error correcting binary BCH codes, and the other related to the cyclic codes with parameters satisfying the generalized Kasami case, respectively. We then obtain infinite families of $ 2 $-designs from these codes by proving that they are both affine-invariant codes, and explicitly determine their parameters. In particular, the codes derived from the dual of binary BCH codes hold five $ 3 $-designs when $ m = 4 $.

Citation: Xiaoni Du, Rong Wang, Chunming Tang, Qi Wang. Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros. Advances in Mathematics of Communications, doi: 10.3934/amc.2020106
References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, volume 103 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus, Jr. and H. F. Mattson, Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-151.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3] T. BethD. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.   Google Scholar
[4]

C. J. Colbourn and R. Mathon, Steiner systems, In Handbook of Combinatorial Designs, Second Edition, pages 128–135, Chapman and Hall/CRC, 2006. https://www.researchgate.net/publication/329786723. Google Scholar

[5]

C. Ding, Codes from Difference Sets, World Scientific, 2015.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[10]

T. Kasami, S. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 1967,475–496. doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[11]

G. T. Kennedy and V. Pless, A coding-theoretic approach to extending designs, Discrete Math., 142 (1995), 155-168.  doi: 10.1016/0012-365X(94)00010-G.  Google Scholar

[12]

J.-L. Kim and V. Pless, Designs in additive codes over $GF(4)$, Des. Codes Cryptogr., 30 (2003), 187-199.  doi: 10.1023/A:1025484821641.  Google Scholar

[13]

R. Lidl and H. Niederreiter, Finite Fields, volume 20 of Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.  Google Scholar

[14]

J. LuoY. Tang and H. Wang, Cyclic codes and sequences: The generalized Kasami case, IEEE Trans. Inform. Theory, 56 (2010), 2130-2142.  doi: 10.1109/TIT.2010.2043783.  Google Scholar

[15]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[16]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, DS18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[17]

V. D. Tonchev, Codes and designs, In V. Pless and W. C. Huffman, editors, Handbook of Coding Theory, Vol. I, II, pages 1229–1267. North-Holland, Amsterdam, 1998. https://www.researchgate.net/publication/268549395. Google Scholar

[18]

V. D. Tonchev, Codes, In C. J. Colbourn and J. H. Dinitz, editors, Handbook of Combinatorial Designs, Discrete Mathematics and its Applications (Boca Raton), pages xxii+984. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007.  Google Scholar

show all references

References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, volume 103 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus, Jr. and H. F. Mattson, Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-151.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3] T. BethD. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.   Google Scholar
[4]

C. J. Colbourn and R. Mathon, Steiner systems, In Handbook of Combinatorial Designs, Second Edition, pages 128–135, Chapman and Hall/CRC, 2006. https://www.researchgate.net/publication/329786723. Google Scholar

[5]

C. Ding, Codes from Difference Sets, World Scientific, 2015.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[10]

T. Kasami, S. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 1967,475–496. doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[11]

G. T. Kennedy and V. Pless, A coding-theoretic approach to extending designs, Discrete Math., 142 (1995), 155-168.  doi: 10.1016/0012-365X(94)00010-G.  Google Scholar

[12]

J.-L. Kim and V. Pless, Designs in additive codes over $GF(4)$, Des. Codes Cryptogr., 30 (2003), 187-199.  doi: 10.1023/A:1025484821641.  Google Scholar

[13]

R. Lidl and H. Niederreiter, Finite Fields, volume 20 of Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.  Google Scholar

[14]

J. LuoY. Tang and H. Wang, Cyclic codes and sequences: The generalized Kasami case, IEEE Trans. Inform. Theory, 56 (2010), 2130-2142.  doi: 10.1109/TIT.2010.2043783.  Google Scholar

[15]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[16]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, DS18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[17]

V. D. Tonchev, Codes and designs, In V. Pless and W. C. Huffman, editors, Handbook of Coding Theory, Vol. I, II, pages 1229–1267. North-Holland, Amsterdam, 1998. https://www.researchgate.net/publication/268549395. Google Scholar

[18]

V. D. Tonchev, Codes, In C. J. Colbourn and J. H. Dinitz, editors, Handbook of Combinatorial Designs, Discrete Mathematics and its Applications (Boca Raton), pages xxii+984. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007.  Google Scholar

Table 1.  The weight distribution of $ {\overline{{\mathcal{C}_1}^{\bot}}}^{\bot} $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1} $ $ 29\times2^{6s-5}-33\times2^{4s-5}+17\times2^{2s-3}-2 $
$ 2^{2s-1}-2^{s-1} $ $ \frac{2}{15}\times2^{2s}(3\times2^{4s}+5\times2^{2s}-8) $
$ 2^{2s-1}+2^{s-1} $ $ \frac{2}{15}\times2^{2s}(3\times2^{4s}+5\times2^{2s}-8) $
$ 2^{2s-1}-2^s $ $ \frac{7}{3}\times2^{4s-4}(2^{2s}-1) $
$ 2^{2s-1}+2^s $ $ \frac{7}{3}\times2^{4s-4}(2^{2s}-1) $
$ 2^{2s-1}-2^{s+1} $ $ \frac{1}{15}\times2^{2s-4}(2^{4s-2}-5\times2^{2s-2}+1) $
$ 2^{2s-1}+2^{s+1} $ $ \frac{1}{15}\times2^{2s-4}(2^{4s-2}-5\times2^{2s-2}+1) $
$ 2^{2s} $ $ 1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1} $ $ 29\times2^{6s-5}-33\times2^{4s-5}+17\times2^{2s-3}-2 $
$ 2^{2s-1}-2^{s-1} $ $ \frac{2}{15}\times2^{2s}(3\times2^{4s}+5\times2^{2s}-8) $
$ 2^{2s-1}+2^{s-1} $ $ \frac{2}{15}\times2^{2s}(3\times2^{4s}+5\times2^{2s}-8) $
$ 2^{2s-1}-2^s $ $ \frac{7}{3}\times2^{4s-4}(2^{2s}-1) $
$ 2^{2s-1}+2^s $ $ \frac{7}{3}\times2^{4s-4}(2^{2s}-1) $
$ 2^{2s-1}-2^{s+1} $ $ \frac{1}{15}\times2^{2s-4}(2^{4s-2}-5\times2^{2s-2}+1) $
$ 2^{2s-1}+2^{s+1} $ $ \frac{1}{15}\times2^{2s-4}(2^{4s-2}-5\times2^{2s-2}+1) $
$ 2^{2s} $ $ 1 $
Table 2.  The weight distribution of $ {\overline{{\mathcal{C}_2}^{\bot}}}^{\bot} $ when $ d' = d $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ 2^{2s}(2^s-1)(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}+2^{s-1} $ $ 2^{2s}(2^s-1)(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{2(s-d)}(2^{s+d}-1)(2^{2s}-1)/(2^{2d}-1) $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{2(s-d)}(2^{s+d}-1)(2^{2s}-1)/(2^{2d}-1) $
$ 2^{2s-1} $ $ 2(2^{3s-d}-2^{2(s-d)}+1)(2^{2s}-1) $
$ 2^{2s} $ $ 1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ 2^{2s}(2^s-1)(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}+2^{s-1} $ $ 2^{2s}(2^s-1)(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{2(s-d)}(2^{s+d}-1)(2^{2s}-1)/(2^{2d}-1) $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{2(s-d)}(2^{s+d}-1)(2^{2s}-1)/(2^{2d}-1) $
$ 2^{2s-1} $ $ 2(2^{3s-d}-2^{2(s-d)}+1)(2^{2s}-1) $
$ 2^{2s} $ $ 1 $
Table 3.  The weight distribution of $ {\overline{{\mathcal{C}_2}^{\bot}}}^{\bot} $ when $ d' = 2d $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ 2^{2s+3d}(2^s-1)(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)/(2^{2d}-1)(2^d+1) $
$ 2^{2s-1}+2^{s-1} $ $ 2^{2s+3d}(2^s-1)(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)/(2^{2d}-1)(2^d+1) $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{2s-d}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)/(2^d+1)^2 $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{2s-d}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)/(2^d+1)^2 $
$ 2^{2s-1} $ $ 2(2^{2s}-1)(2^{3s-d}-2^{3s-2d}+2^{3s-3d}-2^{3s-4d}+2^{3s-5d}+2^{2s-d}-2^{2s-2d+1} +2^{2s-3d}-2^{2s-4d}+1) $
$ 2^{2s-1}-2^{s+2d-1} $ $ 2^{2s-4d}(2^{s-d}-1)(2^{2s}-1)/(2^d+1)(2^{2d}-1) $
$ 2^{2s-1}+2^{s+2d-1} $ $ 2^{2s-4d}(2^{s-d}-1)(2^{2s}-1)/(2^d+1)(2^{2d}-1) $
$ 2^{2s} $ $ 1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ 2^{2s+3d}(2^s-1)(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)/(2^{2d}-1)(2^d+1) $
$ 2^{2s-1}+2^{s-1} $ $ 2^{2s+3d}(2^s-1)(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)/(2^{2d}-1)(2^d+1) $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{2s-d}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)/(2^d+1)^2 $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{2s-d}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)/(2^d+1)^2 $
$ 2^{2s-1} $ $ 2(2^{2s}-1)(2^{3s-d}-2^{3s-2d}+2^{3s-3d}-2^{3s-4d}+2^{3s-5d}+2^{2s-d}-2^{2s-2d+1} +2^{2s-3d}-2^{2s-4d}+1) $
$ 2^{2s-1}-2^{s+2d-1} $ $ 2^{2s-4d}(2^{s-d}-1)(2^{2s}-1)/(2^d+1)(2^{2d}-1) $
$ 2^{2s-1}+2^{s+2d-1} $ $ 2^{2s-4d}(2^{s-d}-1)(2^{2s}-1)/(2^d+1)(2^{2d}-1) $
$ 2^{2s} $ $ 1 $
Table 4.  The weight distribution of $ {\mathcal{C}_2} $ when $ d' = d $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ 2^{s-1}(2^{2s}-1)(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}+2^{s-1} $ $ 2^{s-1}(2^s-1)^2(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{s-d-1}(2^{s+d}-1)(2^{2s}-1)(2^{s-d}+1)/(2^{2d}-1) $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{s-d-1}(2^{s+d}-1)(2^{2s}-1)(2^{s-d}-1)/(2^{2d}-1) $
$ 2^{2s-1} $ $ (2^{3s-d}-2^{2(s-d)}+1)(2^{2s}-1) $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ 2^{s-1}(2^{2s}-1)(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}+2^{s-1} $ $ 2^{s-1}(2^s-1)^2(2^{2(s+d)}-2^{2s+d}-2^{2s}+2^{s+2d}-2^{s+d}+2^{2d})/(2^{2d}-1) $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{s-d-1}(2^{s+d}-1)(2^{2s}-1)(2^{s-d}+1)/(2^{2d}-1) $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{s-d-1}(2^{s+d}-1)(2^{2s}-1)(2^{s-d}-1)/(2^{2d}-1) $
$ 2^{2s-1} $ $ (2^{3s-d}-2^{2(s-d)}+1)(2^{2s}-1) $
Table 5.  The weight distribution of $ {\mathcal{C}_2} $ when $ d' = 2d $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ \frac{2^{s+3d-1}(2^{2s}-1)(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)}{(2^{2d}-1)(2^d+1)} $
$ 2^{2s-1}+2^{s-1} $ $ \frac{2^{2s+3d-1}(2^s-1)^2(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)}{(2^{2d}-1)(2^d+1)} $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{s-1}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)(2^{s-d}+1)/(2^d+1)^2 $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{s-1}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)(2^{s-d}-1)/(2^d+1)^2 $
$ 2^{2s-1} $ $ (2^{2s}-1)(2^{3s-d}-2^{3s-2d}+2^{3s-3d}-2^{3s-4d}+2^{3s-5d} +2^{2s-d}-2^{2s-2d+1}+2^{2s-3d}-2^{2s-4d}+1)$
$ 2^{2s-1}-2^{s+2d-1} $ $ 2^{s-2d-1}(2^{s-d}-1)(2^{2s}-1)(2^{s-2d}+1)/(2^d+1)(2^{2d}-1) $
$ 2^{2s-1}+2^{s+2d-1} $ $ 2^{s-2d-1}(2^{s-d}-1)(2^{2s}-1)(2^{s-2d}-1)/(2^d+1)(2^{2d}-1) $
Weight Multiplicity
$ 0 $ $ 1 $
$ 2^{2s-1}-2^{s-1} $ $ \frac{2^{s+3d-1}(2^{2s}-1)(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)}{(2^{2d}-1)(2^d+1)} $
$ 2^{2s-1}+2^{s-1} $ $ \frac{2^{2s+3d-1}(2^s-1)^2(2^{2s}-2^{2(s-d)}-2^{2s-3d}+2^s-2^{s-d}+1)}{(2^{2d}-1)(2^d+1)} $
$ 2^{2s-1}-2^{s+d-1} $ $ 2^{s-1}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)(2^{s-d}+1)/(2^d+1)^2 $
$ 2^{2s-1}+2^{s+d-1} $ $ 2^{s-1}(2^{2s}-1)(2^s+2^{s-d}+2^{s-2d}+1)(2^{s-d}-1)/(2^d+1)^2 $
$ 2^{2s-1} $ $ (2^{2s}-1)(2^{3s-d}-2^{3s-2d}+2^{3s-3d}-2^{3s-4d}+2^{3s-5d} +2^{2s-d}-2^{2s-2d+1}+2^{2s-3d}-2^{2s-4d}+1)$
$ 2^{2s-1}-2^{s+2d-1} $ $ 2^{s-2d-1}(2^{s-d}-1)(2^{2s}-1)(2^{s-2d}+1)/(2^d+1)(2^{2d}-1) $
$ 2^{2s-1}+2^{s+2d-1} $ $ 2^{s-2d-1}(2^{s-d}-1)(2^{2s}-1)(2^{s-2d}-1)/(2^d+1)(2^{2d}-1) $
[1]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[2]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[3]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

[4]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020074

[5]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[6]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[7]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[8]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[9]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[10]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[11]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[12]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

[13]

Jorge P. Arpasi. On the non-Abelian group code capacity of memoryless channels. Advances in Mathematics of Communications, 2020, 14 (3) : 423-436. doi: 10.3934/amc.2020058

[14]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[15]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149

[16]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[17]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[18]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020046

[19]

Jianying Fang. 5-SEEDs from the lifted Golay code of length 24 over Z4. Advances in Mathematics of Communications, 2017, 11 (1) : 259-266. doi: 10.3934/amc.2017017

[20]

Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $ \bf{333} $ in the setting of a binary $ \bf{q} $-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]