doi: 10.3934/amc.2020107
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimal antiblocking systems of information sets for the binary codes related to triangular graphs

1. 

Zentrum Mathematik, Technische Universität München, 80290 München, Germany

2. 

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

3. 

Dipartimento di Matematica e Informatica Università degli Studi di Perugia, Via Vanvitelli 106123 Perugia, Italy

* Corresponding author: Hans-Joachim Kroll

Dedicated to Professor Helmut Karzel on the occasion of his 92nd birthday.

Received  July 2020 Early access August 2020

We present AI-systems for the binary codes obtained from the adjacency relation of the triangular graphs $ T(n) $ for any $ n\ge 5 $. These AI-systems are optimal and have for $ n $ odd the full error-correcting capability.

Citation: Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, doi: 10.3934/amc.2020107
References:
[1]

J. D. KeyJ. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.  doi: 10.1016/j.ejc.2003.08.001.  Google Scholar

[2]

H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.  doi: 10.1016/j.dam.2010.04.007.  Google Scholar

[3]

H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.  doi: 10.1016/j.disc.2011.06.014.  Google Scholar

[4]

V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998. Google Scholar

[5]

J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.  Google Scholar

[6]

V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.  Google Scholar

show all references

References:
[1]

J. D. KeyJ. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.  doi: 10.1016/j.ejc.2003.08.001.  Google Scholar

[2]

H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.  doi: 10.1016/j.dam.2010.04.007.  Google Scholar

[3]

H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.  doi: 10.1016/j.disc.2011.06.014.  Google Scholar

[4]

V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998. Google Scholar

[5]

J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.  Google Scholar

[6]

V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.  Google Scholar

Figure .  The set $\{x, y\}, \; x < y $ belongs to $\mathcal A_l$ iff $l$ is placed in $(x, y)$
[1]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505

[2]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

[3]

Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443

[4]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[5]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[6]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[7]

Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046

[8]

Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179

[9]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

[10]

Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419

[11]

Anas Chaaban, Vladimir Sidorenko, Christian Senger. On multi-trial Forney-Kovalev decoding of concatenated codes. Advances in Mathematics of Communications, 2014, 8 (1) : 1-20. doi: 10.3934/amc.2014.8.1

[12]

Vladimir Sidorenko, Christian Senger, Martin Bossert, Victor Zyablov. Single-trial decoding of concatenated codes using fixed or adaptive erasing. Advances in Mathematics of Communications, 2010, 4 (1) : 49-60. doi: 10.3934/amc.2010.4.49

[13]

Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485

[14]

Alexey Frolov, Victor Zyablov. On the multiple threshold decoding of LDPC codes over GF(q). Advances in Mathematics of Communications, 2017, 11 (1) : 123-137. doi: 10.3934/amc.2017007

[15]

Julia Lieb, Raquel Pinto. A decoding algorithm for 2D convolutional codes over the erasure channel. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021031

[16]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[17]

Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477

[18]

Anna-Lena Horlemann-Trautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2021, 15 (4) : 677-699. doi: 10.3934/amc.2020089

[19]

Ahmed S. Mansour, Holger Boche, Rafael F. Schaefer. The secrecy capacity of the arbitrarily varying wiretap channel under list decoding. Advances in Mathematics of Communications, 2019, 13 (1) : 11-39. doi: 10.3934/amc.2019002

[20]

Henry Cohn, Nadia Heninger. Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding. Advances in Mathematics of Communications, 2015, 9 (3) : 311-339. doi: 10.3934/amc.2015.9.311

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (109)
  • HTML views (474)
  • Cited by (0)

[Back to Top]