• Previous Article
    On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $
  • AMC Home
  • This Issue
  • Next Article
    New optimal error-correcting codes for crosstalk avoidance in on-chip data buses
doi: 10.3934/amc.2020107

Optimal antiblocking systems of information sets for the binary codes related to triangular graphs

1. 

Zentrum Mathematik, Technische Universität München, 80290 München, Germany

2. 

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

3. 

Dipartimento di Matematica e Informatica Università degli Studi di Perugia, Via Vanvitelli 106123 Perugia, Italy

* Corresponding author: Hans-Joachim Kroll

Dedicated to Professor Helmut Karzel on the occasion of his 92nd birthday.

Received  July 2020 Published  August 2020

We present AI-systems for the binary codes obtained from the adjacency relation of the triangular graphs $ T(n) $ for any $ n\ge 5 $. These AI-systems are optimal and have for $ n $ odd the full error-correcting capability.

Citation: Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, doi: 10.3934/amc.2020107
References:
[1]

J. D. KeyJ. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.  doi: 10.1016/j.ejc.2003.08.001.  Google Scholar

[2]

H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.  doi: 10.1016/j.dam.2010.04.007.  Google Scholar

[3]

H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.  doi: 10.1016/j.disc.2011.06.014.  Google Scholar

[4]

V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998. Google Scholar

[5]

J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.  Google Scholar

[6]

V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.  Google Scholar

show all references

References:
[1]

J. D. KeyJ. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.  doi: 10.1016/j.ejc.2003.08.001.  Google Scholar

[2]

H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.  doi: 10.1016/j.dam.2010.04.007.  Google Scholar

[3]

H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.  doi: 10.1016/j.disc.2011.06.014.  Google Scholar

[4]

V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998. Google Scholar

[5]

J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.  Google Scholar

[6]

V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.  Google Scholar

Figure .  The set $\{x, y\}, \; x < y $ belongs to $\mathcal A_l$ iff $l$ is placed in $(x, y)$
[1]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[2]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[3]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[4]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[5]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[9]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[10]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[11]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[18]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[20]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (49)
  • HTML views (257)
  • Cited by (0)

[Back to Top]