• Previous Article
    On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $
  • AMC Home
  • This Issue
  • Next Article
    New optimal error-correcting codes for crosstalk avoidance in on-chip data buses
doi: 10.3934/amc.2020107

Optimal antiblocking systems of information sets for the binary codes related to triangular graphs

1. 

Zentrum Mathematik, Technische Universität München, 80290 München, Germany

2. 

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

3. 

Dipartimento di Matematica e Informatica Università degli Studi di Perugia, Via Vanvitelli 106123 Perugia, Italy

* Corresponding author: Hans-Joachim Kroll

Dedicated to Professor Helmut Karzel on the occasion of his 92nd birthday.

Received  July 2020 Published  August 2020

We present AI-systems for the binary codes obtained from the adjacency relation of the triangular graphs $ T(n) $ for any $ n\ge 5 $. These AI-systems are optimal and have for $ n $ odd the full error-correcting capability.

Citation: Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, doi: 10.3934/amc.2020107
References:
[1]

J. D. KeyJ. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.  doi: 10.1016/j.ejc.2003.08.001.  Google Scholar

[2]

H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.  doi: 10.1016/j.dam.2010.04.007.  Google Scholar

[3]

H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.  doi: 10.1016/j.disc.2011.06.014.  Google Scholar

[4]

V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998. Google Scholar

[5]

J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.  Google Scholar

[6]

V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.  Google Scholar

show all references

References:
[1]

J. D. KeyJ. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.  doi: 10.1016/j.ejc.2003.08.001.  Google Scholar

[2]

H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.  doi: 10.1016/j.dam.2010.04.007.  Google Scholar

[3]

H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.  doi: 10.1016/j.disc.2011.06.014.  Google Scholar

[4]

V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998. Google Scholar

[5]

J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.  Google Scholar

[6]

V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.  Google Scholar

Figure .  The set $\{x, y\}, \; x < y $ belongs to $\mathcal A_l$ iff $l$ is placed in $(x, y)$
[1]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505

[2]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

[3]

Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443

[4]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[5]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[6]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[7]

Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046

[8]

Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179

[9]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

[10]

Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419

[11]

Anas Chaaban, Vladimir Sidorenko, Christian Senger. On multi-trial Forney-Kovalev decoding of concatenated codes. Advances in Mathematics of Communications, 2014, 8 (1) : 1-20. doi: 10.3934/amc.2014.8.1

[12]

Vladimir Sidorenko, Christian Senger, Martin Bossert, Victor Zyablov. Single-trial decoding of concatenated codes using fixed or adaptive erasing. Advances in Mathematics of Communications, 2010, 4 (1) : 49-60. doi: 10.3934/amc.2010.4.49

[13]

Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485

[14]

Alexey Frolov, Victor Zyablov. On the multiple threshold decoding of LDPC codes over GF(q). Advances in Mathematics of Communications, 2017, 11 (1) : 123-137. doi: 10.3934/amc.2017007

[15]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[16]

Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477

[17]

Anna-Lena Horlemann-Trautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020089

[18]

Ahmed S. Mansour, Holger Boche, Rafael F. Schaefer. The secrecy capacity of the arbitrarily varying wiretap channel under list decoding. Advances in Mathematics of Communications, 2019, 13 (1) : 11-39. doi: 10.3934/amc.2019002

[19]

Henry Cohn, Nadia Heninger. Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding. Advances in Mathematics of Communications, 2015, 9 (3) : 311-339. doi: 10.3934/amc.2015.9.311

[20]

Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]