doi: 10.3934/amc.2020108

${\sf {FAST}}$: Disk encryption and beyond

1. 

Indian Statistical Institute, 203, B.T. Road, Kolkata, India 700108

2. 

Computer Science Department, CINVESTAV-IPN, Mexico, D.F., 07360, Mexico

* Corresponding author: Sebati Ghosh

Received  February 2020 Published  September 2020

This work introduces ${\sf {FAST}}$ which is a new family of tweakable enciphering schemes. Several instantiations of ${\sf {FAST}}$ are described. These are targeted towards two goals, the specific task of disk encryption and a more general scheme suitable for a wide variety of practical applications. A major contribution of this work is to present detailed and careful software implementations of all of these instantiations. For disk encryption, the results from the implementations show that ${\sf {FAST}}$ compares very favourably to the IEEE disk encryption standards XCB and EME2 as well as the more recent proposal AEZ. ${\sf {FAST}}$ is built using a fixed input length pseudo-random function and an appropriate hash function. It uses a single-block key, is parallelisable and can be instantiated using only the encryption function of a block cipher. The hash function can be instantiated using either the Horner's rule based usual polynomial hashing or hashing based on the more efficient Bernstein-Rabin-Winograd polynomials. Security of ${\sf {FAST}}$ has been rigorously analysed using the standard provable security approach and concrete security bounds have been derived. Based on our implementation results, we put forward ${\sf {FAST}}$ as a serious candidate for standardisation and deployment.

Citation: Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, Palash Sarkar. ${\sf {FAST}}$: Disk encryption and beyond. Advances in Mathematics of Communications, doi: 10.3934/amc.2020108
References:
[1]

Public comments on the XTS-AES mode, http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf. Google Scholar

[2]

IEEE Std 1619-2007: Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices, IEEE Computer Society, 2008. Available at: http://standards.ieee.org/findstds/standard/1619-2007.html. Google Scholar

[3]

IEEE Std 1619.2-2010: IEEE Standard for Wide-block Encryption for Shared Storage Media, March 2011. Available at: http://standards.ieee.org/findstds/standard/1619.2-2010.html. Google Scholar

[4]

M. Bellare, D. Cash and S. Keelveedhi, Ciphers that securely encipher their own keys, in (eds. Y. Chen, G. Danezis and V. Shmatikov) Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, 2011,423–432. doi: 10.1145/2046707.2046757.  Google Scholar

[5]

M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A concrete security treatment of symmetric encryption, in 38th Annual Symposium on Foundations of Computer Science, FOCS '97, Miami Beach, Florida, USA, October 19-22, 1997, IEEE Computer Society, 1997,394–403. doi: 10.1109/SFCS.1997.646128.  Google Scholar

[6]

D. J. Bernstein, Polynomial evaluation and message authentication, 2007. Available at: http://cr.yp.to/papers.html#pema. Google Scholar

[7]

R. Bhaumik and M. Nandi, An inverse-free single-keyed tweakable enciphering scheme, in (eds. T. Iwata and J. H. Cheon) Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II, Lecture Notes in Computer Science, 9453, Springer, 2015,159–180. doi: 10.1007/978-3-662-48800-3_7.  Google Scholar

[8]

D. Chakraborty, S. Ghosh and P. Sarkar, A fast single-key two-level universal hash function, IACR Trans. Symmetric Cryptol., 2017 (2017), 106–128. Google Scholar

[9]

D. ChakrabortyV. Hernandez-Jimenez and P. Sarkar, Another look at XCB, Cryptography and Communications, 7 (2015), 439-468.  doi: 10.1007/s12095-015-0127-8.  Google Scholar

[10]

D. Chakraborty, C. Mancillas-López, F. Rodríguez-Henríquez and P. Sarkar, Efficient hardware implementations of BRW polynomials and tweakable enciphering schemes, IEEE Trans. Computers, 62 (2013), 279–294. doi: 10.1109/TC.2011.227.  Google Scholar

[11]

D. Chakraborty, C. Mancillas-López and P. Sarkar, STES: A stream cipher based low cost scheme for securing stored data, IEEE Trans. Computers, 64 (2015), 2691–2707. doi: 10.1109/TC.2014.2366739.  Google Scholar

[12]

D. Chakraborty and M. Nandi, An improved security bound for HCTR, in (eds. K. Nyberg) Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, Lecture Notes in Computer Science, 5086, Springer, 2008,289–302. doi: 10.1007/978-3-540-71039-4_18.  Google Scholar

[13]

D. Chakraborty and P. Sarkar, A new mode of encryption providing a tweakable strong pseudo-random permutation, in (eds. M. J. B. Robshaw) FSE, Lecture Notes in Computer Science, 4047, Springer, 2006,293–309. doi: 10.1007/11799313_19.  Google Scholar

[14]

D. Chakraborty and P. Sarkar, HCH: A new tweakable enciphering scheme using the hash-counter-hash approach, IEEE Transactions on Information Theory, 54 (2008), 1683-1699.  doi: 10.1109/TIT.2008.917623.  Google Scholar

[15]

D. Chakraborty and P. Sarkar, On modes of operations of a block cipher for authentication and authenticated encryption, Cryptography and Communications, 8 (2016), 455-511.  doi: 10.1007/s12095-015-0153-6.  Google Scholar

[16]

P. Crowley and E. Biggers, Adiantum: Length-preserving encryption for entry-level processors, IACR Trans. Symmetric Cryptol., 2018 (2018), 39–61. Google Scholar

[17]

M. J. Dworkin, SP 800-38E. Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices, Technical report, Gaithersburg, MD, United States, 2010. Google Scholar

[18]

S. Gueron and M. E. Kounavis, Efficient implementation of the galois counter mode using a carry-less multiplier and a fast reduction algorithm, Inf. Process. Lett., 110 (2010), 549-553.  doi: 10.1016/j.ipl.2010.04.011.  Google Scholar

[19]

S. Gueron, A. Langley and Y. Lindell, AES-GCM-SIV: Specification and analysis, IACR Cryptology ePrint Archive, 168 (2017). doi: 10.1007/978-3-319-52153-4.  Google Scholar

[20]

S. Halevi, EME$^{ * }$: Extending EME to handle arbitrary-length messages with associated data, in (eds. A. Canteaut and K. Viswanathan) INDOCRYPT, Lecture Notes in Computer Science, 3348, Springer 2004,315–327. doi: 10.1007/978-3-540-30556-9_25.  Google Scholar

[21]

S. Halevi, Invertible universal hashing and the TET encryption mode, in (eds. A. Menezes) CRYPTO, Lecture Notes in Computer Science, 4622, Springer, (2007), pages 412–429. doi: 10.1007/978-3-540-74143-5_23.  Google Scholar

[22]

S. Halevi and H. Krawczyk, Security under key-dependent inputs, in (eds. P. Ning, S. De Capitani di Vimercati, and P. F. Syverson) Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, 2007,466–475. doi: 10.1007/11935308.  Google Scholar

[23]

S. Halevi and P. Rogaway, A tweakable enciphering mode, in (eds. D. Boneh) CRYPTO, Lecture Notes in Computer Science, 2729, Springer, 2003,482–499. doi: 10.1007/978-3-540-45146-4_28.  Google Scholar

[24]

S. Halevi and P. Rogaway, A parallelizable enciphering mode, in (eds. T. Okamoto) CT-RSA, Lecture Notes in Computer Science, 2964, Springer, 2004,292–304. doi: 10.1007/978-3-540-24660-2_23.  Google Scholar

[25]

V. T. Hoang, T. Krovetz and P. Rogaway, Robust authenticated-encryption AEZ and the problem that it solves, in (eds. E. Oswald and M. Fischlin) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, Lecture Notes in Computer Science, 9056, Springer, 2015, 15–44. doi: 10.1007/978-3-662-46800-5_2.  Google Scholar

[26]

M. Liskov, R. L. Rivest and D. Wagner, Tweakable block ciphers, in (eds. M. Yung) CRYPTO, Lecture Notes in Computer Science, 2442, Springer, 2002, 31–46. doi: 10.1007/3-540-45708-9_3.  Google Scholar

[27]

D. A. McGrew and S. R. Fluhrer, The extended codebook (XCB) mode of operation, Cryptology ePrint Archive, Report 2004/278, 2004, Available at: http://eprint.iacr.org/. Google Scholar

[28]

D. A. McGrew and S. R. Fluhrer, The security of the extended codebook (xcb) mode of operation, in (eds. C. M. Adams, A. Miri, and M. J. Wiener) Selected Areas in Cryptography, Lecture Notes in Computer Science, 4876, Springer, 2007,311–327. doi: 10.1007/978-3-540-77360-3_20.  Google Scholar

[29]

D. A. McGrew and J. Viega, Arbitrary block length mode, 2004. Google Scholar

[30]

K. Minematsu, Parallelizable rate-1 authenticated encryption from pseudorandom functions, in (eds. P. Q. Nguyen and E. Oswald) Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, Lecture Notes in Computer Science, 8441, Springer, 2014,275–292. doi: 10.1007/978-3-642-55220-5_16.  Google Scholar

[31]

M. Naor and O. Reingold, On the construction of pseudorandom permutations: Luby-Rackoff revisited, J. Cryptology, 12 (1999), 29-66.  doi: 10.1007/PL00003817.  Google Scholar

[32]

M. O. Rabin and S. Winograd, Fast evaluation of polynomials by rational preparation, Comm. Pure Appl. Math., 25 (1972), 433-458.  doi: 10.1002/cpa.3160250405.  Google Scholar

[33]

P. Rogaway, Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC, in (eds. P. J. Lee) ASIACRYPT, Lecture Notes in Computer Science, 3329, Springer, 2004, 16–31. doi: 10.1007/978-3-540-30539-2_2.  Google Scholar

[34]

P. Rogaway and T. Shrimpton, A provable-security treatment of the key-wrap problem, in (eds. Serge Vaudenay) EUROCRYPT, Lecture Notes in Computer Science, 4004, Springer, 2006,373–390. doi: 10.1007/11761679_23.  Google Scholar

[35]

P. Sarkar, A general mixing strategy for the ECB-Mix-ECB mode of operation, Inf. Process. Lett., 109 (2008), 121-123.  doi: 10.1016/j.ipl.2008.09.012.  Google Scholar

[36]

P. Sarkar, Efficient tweakable enciphering schemes from (block-wise) universal hash functions, IEEE Transactions on Information Theory, 55 (2009), 4749-4759.  doi: 10.1109/TIT.2009.2027487.  Google Scholar

[37]

P. Sarkar, Tweakable enciphering schemes using only the encryption function of a block cipher, Inf. Process. Lett., 111 (2011), 945-955.  doi: 10.1016/j.ipl.2011.06.014.  Google Scholar

[38]

P. Wang, D. Feng and W. Wu, HCTR: A variable-input-length enciphering mode, in (eds. D. Feng, D. Lin, and M. Yung) CISC, Lecture Notes in Computer Science, 3822, Springer, 2005,175–188. doi: 10.1007/11599548_15.  Google Scholar

show all references

References:
[1]

Public comments on the XTS-AES mode, http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf. Google Scholar

[2]

IEEE Std 1619-2007: Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices, IEEE Computer Society, 2008. Available at: http://standards.ieee.org/findstds/standard/1619-2007.html. Google Scholar

[3]

IEEE Std 1619.2-2010: IEEE Standard for Wide-block Encryption for Shared Storage Media, March 2011. Available at: http://standards.ieee.org/findstds/standard/1619.2-2010.html. Google Scholar

[4]

M. Bellare, D. Cash and S. Keelveedhi, Ciphers that securely encipher their own keys, in (eds. Y. Chen, G. Danezis and V. Shmatikov) Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, 2011,423–432. doi: 10.1145/2046707.2046757.  Google Scholar

[5]

M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A concrete security treatment of symmetric encryption, in 38th Annual Symposium on Foundations of Computer Science, FOCS '97, Miami Beach, Florida, USA, October 19-22, 1997, IEEE Computer Society, 1997,394–403. doi: 10.1109/SFCS.1997.646128.  Google Scholar

[6]

D. J. Bernstein, Polynomial evaluation and message authentication, 2007. Available at: http://cr.yp.to/papers.html#pema. Google Scholar

[7]

R. Bhaumik and M. Nandi, An inverse-free single-keyed tweakable enciphering scheme, in (eds. T. Iwata and J. H. Cheon) Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II, Lecture Notes in Computer Science, 9453, Springer, 2015,159–180. doi: 10.1007/978-3-662-48800-3_7.  Google Scholar

[8]

D. Chakraborty, S. Ghosh and P. Sarkar, A fast single-key two-level universal hash function, IACR Trans. Symmetric Cryptol., 2017 (2017), 106–128. Google Scholar

[9]

D. ChakrabortyV. Hernandez-Jimenez and P. Sarkar, Another look at XCB, Cryptography and Communications, 7 (2015), 439-468.  doi: 10.1007/s12095-015-0127-8.  Google Scholar

[10]

D. Chakraborty, C. Mancillas-López, F. Rodríguez-Henríquez and P. Sarkar, Efficient hardware implementations of BRW polynomials and tweakable enciphering schemes, IEEE Trans. Computers, 62 (2013), 279–294. doi: 10.1109/TC.2011.227.  Google Scholar

[11]

D. Chakraborty, C. Mancillas-López and P. Sarkar, STES: A stream cipher based low cost scheme for securing stored data, IEEE Trans. Computers, 64 (2015), 2691–2707. doi: 10.1109/TC.2014.2366739.  Google Scholar

[12]

D. Chakraborty and M. Nandi, An improved security bound for HCTR, in (eds. K. Nyberg) Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, Lecture Notes in Computer Science, 5086, Springer, 2008,289–302. doi: 10.1007/978-3-540-71039-4_18.  Google Scholar

[13]

D. Chakraborty and P. Sarkar, A new mode of encryption providing a tweakable strong pseudo-random permutation, in (eds. M. J. B. Robshaw) FSE, Lecture Notes in Computer Science, 4047, Springer, 2006,293–309. doi: 10.1007/11799313_19.  Google Scholar

[14]

D. Chakraborty and P. Sarkar, HCH: A new tweakable enciphering scheme using the hash-counter-hash approach, IEEE Transactions on Information Theory, 54 (2008), 1683-1699.  doi: 10.1109/TIT.2008.917623.  Google Scholar

[15]

D. Chakraborty and P. Sarkar, On modes of operations of a block cipher for authentication and authenticated encryption, Cryptography and Communications, 8 (2016), 455-511.  doi: 10.1007/s12095-015-0153-6.  Google Scholar

[16]

P. Crowley and E. Biggers, Adiantum: Length-preserving encryption for entry-level processors, IACR Trans. Symmetric Cryptol., 2018 (2018), 39–61. Google Scholar

[17]

M. J. Dworkin, SP 800-38E. Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices, Technical report, Gaithersburg, MD, United States, 2010. Google Scholar

[18]

S. Gueron and M. E. Kounavis, Efficient implementation of the galois counter mode using a carry-less multiplier and a fast reduction algorithm, Inf. Process. Lett., 110 (2010), 549-553.  doi: 10.1016/j.ipl.2010.04.011.  Google Scholar

[19]

S. Gueron, A. Langley and Y. Lindell, AES-GCM-SIV: Specification and analysis, IACR Cryptology ePrint Archive, 168 (2017). doi: 10.1007/978-3-319-52153-4.  Google Scholar

[20]

S. Halevi, EME$^{ * }$: Extending EME to handle arbitrary-length messages with associated data, in (eds. A. Canteaut and K. Viswanathan) INDOCRYPT, Lecture Notes in Computer Science, 3348, Springer 2004,315–327. doi: 10.1007/978-3-540-30556-9_25.  Google Scholar

[21]

S. Halevi, Invertible universal hashing and the TET encryption mode, in (eds. A. Menezes) CRYPTO, Lecture Notes in Computer Science, 4622, Springer, (2007), pages 412–429. doi: 10.1007/978-3-540-74143-5_23.  Google Scholar

[22]

S. Halevi and H. Krawczyk, Security under key-dependent inputs, in (eds. P. Ning, S. De Capitani di Vimercati, and P. F. Syverson) Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, 2007,466–475. doi: 10.1007/11935308.  Google Scholar

[23]

S. Halevi and P. Rogaway, A tweakable enciphering mode, in (eds. D. Boneh) CRYPTO, Lecture Notes in Computer Science, 2729, Springer, 2003,482–499. doi: 10.1007/978-3-540-45146-4_28.  Google Scholar

[24]

S. Halevi and P. Rogaway, A parallelizable enciphering mode, in (eds. T. Okamoto) CT-RSA, Lecture Notes in Computer Science, 2964, Springer, 2004,292–304. doi: 10.1007/978-3-540-24660-2_23.  Google Scholar

[25]

V. T. Hoang, T. Krovetz and P. Rogaway, Robust authenticated-encryption AEZ and the problem that it solves, in (eds. E. Oswald and M. Fischlin) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, Lecture Notes in Computer Science, 9056, Springer, 2015, 15–44. doi: 10.1007/978-3-662-46800-5_2.  Google Scholar

[26]

M. Liskov, R. L. Rivest and D. Wagner, Tweakable block ciphers, in (eds. M. Yung) CRYPTO, Lecture Notes in Computer Science, 2442, Springer, 2002, 31–46. doi: 10.1007/3-540-45708-9_3.  Google Scholar

[27]

D. A. McGrew and S. R. Fluhrer, The extended codebook (XCB) mode of operation, Cryptology ePrint Archive, Report 2004/278, 2004, Available at: http://eprint.iacr.org/. Google Scholar

[28]

D. A. McGrew and S. R. Fluhrer, The security of the extended codebook (xcb) mode of operation, in (eds. C. M. Adams, A. Miri, and M. J. Wiener) Selected Areas in Cryptography, Lecture Notes in Computer Science, 4876, Springer, 2007,311–327. doi: 10.1007/978-3-540-77360-3_20.  Google Scholar

[29]

D. A. McGrew and J. Viega, Arbitrary block length mode, 2004. Google Scholar

[30]

K. Minematsu, Parallelizable rate-1 authenticated encryption from pseudorandom functions, in (eds. P. Q. Nguyen and E. Oswald) Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, Lecture Notes in Computer Science, 8441, Springer, 2014,275–292. doi: 10.1007/978-3-642-55220-5_16.  Google Scholar

[31]

M. Naor and O. Reingold, On the construction of pseudorandom permutations: Luby-Rackoff revisited, J. Cryptology, 12 (1999), 29-66.  doi: 10.1007/PL00003817.  Google Scholar

[32]

M. O. Rabin and S. Winograd, Fast evaluation of polynomials by rational preparation, Comm. Pure Appl. Math., 25 (1972), 433-458.  doi: 10.1002/cpa.3160250405.  Google Scholar

[33]

P. Rogaway, Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC, in (eds. P. J. Lee) ASIACRYPT, Lecture Notes in Computer Science, 3329, Springer, 2004, 16–31. doi: 10.1007/978-3-540-30539-2_2.  Google Scholar

[34]

P. Rogaway and T. Shrimpton, A provable-security treatment of the key-wrap problem, in (eds. Serge Vaudenay) EUROCRYPT, Lecture Notes in Computer Science, 4004, Springer, 2006,373–390. doi: 10.1007/11761679_23.  Google Scholar

[35]

P. Sarkar, A general mixing strategy for the ECB-Mix-ECB mode of operation, Inf. Process. Lett., 109 (2008), 121-123.  doi: 10.1016/j.ipl.2008.09.012.  Google Scholar

[36]

P. Sarkar, Efficient tweakable enciphering schemes from (block-wise) universal hash functions, IEEE Transactions on Information Theory, 55 (2009), 4749-4759.  doi: 10.1109/TIT.2009.2027487.  Google Scholar

[37]

P. Sarkar, Tweakable enciphering schemes using only the encryption function of a block cipher, Inf. Process. Lett., 111 (2011), 945-955.  doi: 10.1016/j.ipl.2011.06.014.  Google Scholar

[38]

P. Wang, D. Feng and W. Wu, HCTR: A variable-input-length enciphering mode, in (eds. D. Feng, D. Lin, and M. Yung) CISC, Lecture Notes in Computer Science, 3822, Springer, 2005,175–188. doi: 10.1007/11599548_15.  Google Scholar

Figure 1.  The hash functions $ \mathbf{H} $ and $ \mathbf{G} $
Table 1.  Encryption and decryption algorithms for ${\sf FAST}$
Table 2.  A two-round Feistel construction required in Table 1
Table 3.  Computations of ${\sf {vecHorner}}$ and ${\sf {vecHash2L}}$. The string $ 1^n $ denotes the element of $ { \mathbb{F} } $ whose binary representation consists of the all-one string. Here $ \eta $ is a positive integer $ \geq 3 $ and $ \mathfrak{d}(\eta) $ denote the degree of $ {\sf {BRW}}_{\tau}(X_1, \ldots, X_\eta) $, where $ X_1, \ldots, X_\eta \in { \mathbb{F} } $
Table 4.  Game $ G_{{\sf {real}}} $
Table 5.  Game $ G_{{\sf {int}}} $
Table 6.  Game $ G_{{\sf {rnd}}} $
Table 7.  Comparison of different tweakable enciphering schemes according to computational efficiency. [BC] denotes the number of block cipher calls; [M] denotes the number of field multiplications; [D] denotes the number of doubling ('multiplication by $ \alpha $') operations;
type scheme [BC] [M] [D]
enc-mix-enc CMC [23] $ 2m+1 $
EME2$ ^* $ [20] $ 2m+1+m/n $ 2
AEZ [25] $ (5m+4)/2 $ $ \frac{m-2}{4} $
FMix [7] $ 2m+1 $
hash-enc-hash XCB [27] $ m+1 $ $ 2(m+3) $
HCTR [38] $ m $ $ 2(m+1) $
HCHfp [14] $ m+2 $ $ 2(m-1) $
TET [21] $ m+1 $ $ 2m $ $ 2(m-1) $
HEH-BRW[36] $ m+1 $ $ 2+2\lfloor(m-1)/2\rfloor $ $ 2(m-1) $
$ {\sf {TESX}} $ with BRW [37] $ m+1 $ $ 4+2\lfloor(m-1)/2\rfloor $ $ 2(m-1) $
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf Horner}] $ $ m+1 $ $ 2m+1 $
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf {BRW}}] $ $ m+1 $ $ 2+2\lfloor(m-1)/2\rfloor $
type scheme [BC] [M] [D]
enc-mix-enc CMC [23] $ 2m+1 $
EME2$ ^* $ [20] $ 2m+1+m/n $ 2
AEZ [25] $ (5m+4)/2 $ $ \frac{m-2}{4} $
FMix [7] $ 2m+1 $
hash-enc-hash XCB [27] $ m+1 $ $ 2(m+3) $
HCTR [38] $ m $ $ 2(m+1) $
HCHfp [14] $ m+2 $ $ 2(m-1) $
TET [21] $ m+1 $ $ 2m $ $ 2(m-1) $
HEH-BRW[36] $ m+1 $ $ 2+2\lfloor(m-1)/2\rfloor $ $ 2(m-1) $
$ {\sf {TESX}} $ with BRW [37] $ m+1 $ $ 4+2\lfloor(m-1)/2\rfloor $ $ 2(m-1) $
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf Horner}] $ $ m+1 $ $ 2m+1 $
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf {BRW}}] $ $ m+1 $ $ 2+2\lfloor(m-1)/2\rfloor $
Table 8.  Comparison of different tweakable enciphering schemes according to practical and implementation simplicity. [BCK] denotes the number of block cipher keys; and [HK] denotes the number of blocks in the hash key
type scheme [BCK] [HK] dec module parallel
enc-mix-enc CMC [23] 1 - reqd no
EME2$ ^* $ [20] 1 2 reqd yes
AEZ [25] 1 2 not reqd yes
FMix [7] 1 - not reqd no
hash-enc-hash XCB [27] 3 2 reqd yes
HCTR [38] 1 1 reqd yes
HCHfp [14] 1 1 reqd yes
TET [21] 2 3 reqd yes
HEH-BRW[36] 1 1 reqd yes
$ {\sf {TESX}} $ with BRW [37] 1 2 not reqd yes
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf Horner}] $ 1 - not reqd yes
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf {BRW}}] $ 1 - not reqd yes
Note: for both Tables 7 and 8, the block size is $n$ bits, the tweak is a single $n$-bit block and the number of blocks $m\geq 3$ in the message is fixed.
type scheme [BCK] [HK] dec module parallel
enc-mix-enc CMC [23] 1 - reqd no
EME2$ ^* $ [20] 1 2 reqd yes
AEZ [25] 1 2 not reqd yes
FMix [7] 1 - not reqd no
hash-enc-hash XCB [27] 3 2 reqd yes
HCTR [38] 1 1 reqd yes
HCHfp [14] 1 1 reqd yes
TET [21] 2 3 reqd yes
HEH-BRW[36] 1 1 reqd yes
$ {\sf {TESX}} $ with BRW [37] 1 2 not reqd yes
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf Horner}] $ 1 - not reqd yes
$ {\sf {FAST}}[{\sf {Fx}}_m, {\sf {BRW}}] $ 1 - not reqd yes
Note: for both Tables 7 and 8, the block size is $n$ bits, the tweak is a single $n$-bit block and the number of blocks $m\geq 3$ in the message is fixed.
Table 9.  Comparison of the cycles per byte measure of ${\sf {FAST}}$ with those of XCB, EME2 and AEZ in the setting of $ {\sf {Fx}}_{256} $
scheme Skylake Kabylake
XCB 1.92 1.85
EME2 2.07 1.99
AEZ 1.74 1.70
$ {\sf {FAST}}[{\sf {Fx}}_{256}, {\sf {Horner}}] $ 1.63 1.56
$ {\sf {FAST}}[{\sf {Fx}}_{256}, {\sf {BRW}}] $ 1.24 1.19
scheme Skylake Kabylake
XCB 1.92 1.85
EME2 2.07 1.99
AEZ 1.74 1.70
$ {\sf {FAST}}[{\sf {Fx}}_{256}, {\sf {Horner}}] $ 1.63 1.56
$ {\sf {FAST}}[{\sf {Fx}}_{256}, {\sf {BRW}}] $ 1.24 1.19
Table 10.  Report of cycles per byte measure for the setting of ${\sf {Gn}}$ for $ {\sf {FAST}}[{\sf {Gn}}, \mathfrak{k}, {\sf {vecHorner}}] $ and $ {\sf {FAST}}[{\sf {Gn}}, \mathfrak{k}, 31, {\sf {vecHash2L}}] $
Skylake Kabylake
msg len $ \mathfrak{k} $ $ {\sf {vecHorner}} $ $ {\sf {vecHash2L}} $ $ {\sf {vecHash2L}} $ $ {\sf {vecHorner}} $ $ {\sf {vecHash2L}} $ $ {\sf {vecHash2L}} $
(bytes) (delayed) (normal) (delayed) (normal)
2 1.51 1.38 1.59 1.42 1.32 1.56
512 3 1.40 1.38 1.39 1.32 1.31 1.35
4 1.34 1.37 1.36 1.26 1.31 1.33
2 1.53 1.34 1.48 1.42 1.27 1.42
1024 3 1.45 1.34 1.34 1.35 1.27 1.30
4 1.40 1.33 1.32 1.29 1.27 1.30
2 1.57 1.30 1.35 1.45 1.24 1.30
4096 3 1.54 1.29 1.31 1.43 1.24 1.27
4 1.51 1.29 1.30 1.40 1.24 1.26
2 1.57 1.27 1.32 1.45 1.22 1.27
8192 3 1.56 1.27 1.30 1.44 1.22 1.25
4 1.54 1.27 1.30 1.43 1.22 1.25
Skylake Kabylake
msg len $ \mathfrak{k} $ $ {\sf {vecHorner}} $ $ {\sf {vecHash2L}} $ $ {\sf {vecHash2L}} $ $ {\sf {vecHorner}} $ $ {\sf {vecHash2L}} $ $ {\sf {vecHash2L}} $
(bytes) (delayed) (normal) (delayed) (normal)
2 1.51 1.38 1.59 1.42 1.32 1.56
512 3 1.40 1.38 1.39 1.32 1.31 1.35
4 1.34 1.37 1.36 1.26 1.31 1.33
2 1.53 1.34 1.48 1.42 1.27 1.42
1024 3 1.45 1.34 1.34 1.35 1.27 1.30
4 1.40 1.33 1.32 1.29 1.27 1.30
2 1.57 1.30 1.35 1.45 1.24 1.30
4096 3 1.54 1.29 1.31 1.43 1.24 1.27
4 1.51 1.29 1.30 1.40 1.24 1.26
2 1.57 1.27 1.32 1.45 1.22 1.27
8192 3 1.56 1.27 1.30 1.44 1.22 1.25
4 1.54 1.27 1.30 1.43 1.22 1.25
[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[5]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[8]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[9]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]