doi: 10.3934/amc.2020109

Further results on 2-uniform states arising from irredundant orthogonal arrays

1. 

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050024, China

2. 

Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

3. 

School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing, 210038, China

* Corresponding author: Zihong Tian

Received  February 2020 Revised  May 2020 Published  September 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant No. 11871019) and the Graduate Innovation Project of Hebei Province (Grant No. CXZZBS2019077)

The notion of an irredundant orthogonal array (IrOA) was introduced by Goyeneche and $ \dot{Z} $yczkowski who showed an IrOA$ _{\lambda}(t, k, v) $ corresponds to a $ t $-uniform state of $ k $ subsystems with local dimension $ v $ (Physical Review A. 90 (2014), 022316). In this paper, we construct some kinds of 2-uniform states by establishing the existence of IrOA$ _{\lambda}(2, 5, v) $ for any integer $ v\geq 4 $, $ v\neq 6 $; IrOA$ _{\lambda}(2, 6, v) $ for any integer $ v\geq 2 $; IrOA$ _{\lambda}(2, q, q) $ and IrOA$ _{\lambda}(2, q+1, q) $ for any prime power $ q >3 $.

Citation: Yajuan Zang, Guangzhou Chen, Kejun Chen, Zihong Tian. Further results on 2-uniform states arising from irredundant orthogonal arrays. Advances in Mathematics of Communications, doi: 10.3934/amc.2020109
References:
[1]

R. J. R. AbelF. E. Bennett and G. G. Ge, Super-simple holey steiner pentagon systems and related designs, J. Combin. Des., 16 (2008), 301-328.  doi: 10.1002/jcd.20171.  Google Scholar

[2]

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phy. Rev. Lett., 68 (1992), 3121-3124.  doi: 10.1103/PhysRevLett.68.3121.  Google Scholar

[3]

C. H. BennettG. BrassardC. CrépeauR. JozsaA. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Phys. Rev. Lett., 70 (1993), 1895-1899.  doi: 10.1103/PhysRevLett.70.1895.  Google Scholar

[4]

R. C. Bose, A note on orthogonal arrays, Ann. Math. Stat., 21 (1950), 304-305.   Google Scholar

[5]

K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat., 23 (1952), 426-434.  doi: 10.1214/aoms/1177729387.  Google Scholar

[6]

G. Z. ChenK. J. Chen and Y. Zhang, Super-simple (5, 4)-GDDs of group type $g^{u}$, Front. Math. China, 9 (2014), 1001-1018.  doi: 10.1007/s11464-014-0393-3.  Google Scholar

[7]

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC Press, 2007.  Google Scholar

[8]

Y. H. Chen, Constructions of Optimal Detecting Arrays of Degree 5 and Strength 2, Master Thesis, Soochow University, 2011. Google Scholar

[9]

P. Facchi, Multipartite entanglement in qubit systems, Rend. Lincei Mat. Appl., 20 (2009), 25-67.  doi: 10.4171/RLM/532.  Google Scholar

[10]

P. Facchi, G. Florio, G. Parisi and S. Pascazio, Maximally multipartite entangled states, Phys. Rev. A, 77 (2008), 060304, 1–4. doi: 10.1103/PhysRevA.77.060304.  Google Scholar

[11]

K. Q. FengL. F. JinC. P. Xing and C. Yuan, Multipartite entangled states, symmetric matrices and error-correcting codes, IEEE Trans. Inform. Theory, 63 (2017), 5618-5627.  doi: 10.1109/tit.2017.2700866.  Google Scholar

[12]

D. Goyeneche, Z. Raissi, S. D. Martino and K. $\dot{Z}$yczkowski, Entanglement and quantum combinatorial designs, Physical Review A, 97 (2018), 062326, 1–12. doi: 10.1103/PhysRevA.97.062326.  Google Scholar

[13]

D. Goyeneche and K. $\dot{Z}$yczkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A, 90 (2014), 022316, 1–18. doi: 10.1103/PhysRevA.90.022316.  Google Scholar

[14]

A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Array: Theory and Applications, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1478-6.  Google Scholar

[15]

S. Hartman, On simple and supersimple transversal designs, J. Comb. Des., 8 (2000), 311-322.  doi: 10.1002/1520-6610(2000)8:5<311::AID-JCD1>3.0.CO;2-1.  Google Scholar

[16]

W. Helwig, Absolutely maximally entangled qudit graph states, preprint, arXiv: 1306.2879. Google Scholar

[17]

W. Helwig, W. Cui, J. I. Latorre, A. Riera and H. K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev. A, 86 (2012), 052335, 1–5. doi: 10.1103/PhysRevA.86.052335.  Google Scholar

[18]

P. Horodecki, Ł. Rudnicki and K. $\dot{Z}$yczkowski, Five open problems in quantum information, preprint, arXiv: 2002.03233. Google Scholar

[19]

L. J. Ji and J. X. Yin, Construction of new orthogonal arrays and covering arrays of strength three, J. Combin. Theory Ser. A, 117 (2010), 236-247.  doi: 10.1016/j.jcta.2009.06.002.  Google Scholar

[20]

R. Jozsa and N. Linden, On the role of entanglement in quantum computational speed-up, Proc. R. Soc. A, 459 (2003), 2011-2032.  doi: 10.1098/rspa.2002.1097.  Google Scholar

[21]

M. S. Li and Y. L. Wang, K-uniform quantum states arising from orthogonal arrays, Phy. Rev. A, 99 (2019), 042332, 1–7.  Google Scholar

[22]

H. K. Lo, M. Curty and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108 (2012), 130503, 1–5. doi: 10.1103/PhysRevLett.108.130503.  Google Scholar

[23]

S. Q. PangX. ZhangX. Lin and Q. J. Zhang, Two and three-uniform states from irredundant orthogonal arrays, NPJ Quantum Inf., 5 (2019), 1-10.  doi: 10.1038/s41534-019-0165-8.  Google Scholar

[24]

A. J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quan-tum evolutions, Phys. Rev. A, 69 (2004), 052330, 1–10. Google Scholar

[25]

E. Seiden and R. Zemach, On orthogonal arrays, Ann. Math. Stat., 37 (1966), 1355-1370.  doi: 10.1214/aoms/1177699280.  Google Scholar

[26]

C. ShiY. Tang and J. X. Yin, The equivalence between optimal detecting arrays and super-simple OAs, Des. Codes Crypogr., 62 (2012), 131-142.  doi: 10.1007/s10623-011-9498-9.  Google Scholar

[27]

Y. J. Zang, H. J. Zuo and Z. H. Tian, 3-uniform states and orthogonal arrays of strength 3, Int. J. Quantum Information, 17 (2019), 1950003, 1–8. doi: 10.1142/S0219749919500035.  Google Scholar

[28]

X. W. ZhaI. Ahmed and Y. P. Zhang, 3-uniform states and orthognal arrays, Results Phys., 6 (2016), 26-28.   Google Scholar

[29]

X. W. Zha, C. Z. Yuan and Y. P. Zhang, Generalized criterion for a maximally multi-qubit entangled states, Laser Phys. Lett., 10 (2013), 045201, 1–6. doi: 10.1088/1612-2011/10/4/045201.  Google Scholar

show all references

References:
[1]

R. J. R. AbelF. E. Bennett and G. G. Ge, Super-simple holey steiner pentagon systems and related designs, J. Combin. Des., 16 (2008), 301-328.  doi: 10.1002/jcd.20171.  Google Scholar

[2]

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phy. Rev. Lett., 68 (1992), 3121-3124.  doi: 10.1103/PhysRevLett.68.3121.  Google Scholar

[3]

C. H. BennettG. BrassardC. CrépeauR. JozsaA. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Phys. Rev. Lett., 70 (1993), 1895-1899.  doi: 10.1103/PhysRevLett.70.1895.  Google Scholar

[4]

R. C. Bose, A note on orthogonal arrays, Ann. Math. Stat., 21 (1950), 304-305.   Google Scholar

[5]

K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat., 23 (1952), 426-434.  doi: 10.1214/aoms/1177729387.  Google Scholar

[6]

G. Z. ChenK. J. Chen and Y. Zhang, Super-simple (5, 4)-GDDs of group type $g^{u}$, Front. Math. China, 9 (2014), 1001-1018.  doi: 10.1007/s11464-014-0393-3.  Google Scholar

[7]

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC Press, 2007.  Google Scholar

[8]

Y. H. Chen, Constructions of Optimal Detecting Arrays of Degree 5 and Strength 2, Master Thesis, Soochow University, 2011. Google Scholar

[9]

P. Facchi, Multipartite entanglement in qubit systems, Rend. Lincei Mat. Appl., 20 (2009), 25-67.  doi: 10.4171/RLM/532.  Google Scholar

[10]

P. Facchi, G. Florio, G. Parisi and S. Pascazio, Maximally multipartite entangled states, Phys. Rev. A, 77 (2008), 060304, 1–4. doi: 10.1103/PhysRevA.77.060304.  Google Scholar

[11]

K. Q. FengL. F. JinC. P. Xing and C. Yuan, Multipartite entangled states, symmetric matrices and error-correcting codes, IEEE Trans. Inform. Theory, 63 (2017), 5618-5627.  doi: 10.1109/tit.2017.2700866.  Google Scholar

[12]

D. Goyeneche, Z. Raissi, S. D. Martino and K. $\dot{Z}$yczkowski, Entanglement and quantum combinatorial designs, Physical Review A, 97 (2018), 062326, 1–12. doi: 10.1103/PhysRevA.97.062326.  Google Scholar

[13]

D. Goyeneche and K. $\dot{Z}$yczkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A, 90 (2014), 022316, 1–18. doi: 10.1103/PhysRevA.90.022316.  Google Scholar

[14]

A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Array: Theory and Applications, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1478-6.  Google Scholar

[15]

S. Hartman, On simple and supersimple transversal designs, J. Comb. Des., 8 (2000), 311-322.  doi: 10.1002/1520-6610(2000)8:5<311::AID-JCD1>3.0.CO;2-1.  Google Scholar

[16]

W. Helwig, Absolutely maximally entangled qudit graph states, preprint, arXiv: 1306.2879. Google Scholar

[17]

W. Helwig, W. Cui, J. I. Latorre, A. Riera and H. K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev. A, 86 (2012), 052335, 1–5. doi: 10.1103/PhysRevA.86.052335.  Google Scholar

[18]

P. Horodecki, Ł. Rudnicki and K. $\dot{Z}$yczkowski, Five open problems in quantum information, preprint, arXiv: 2002.03233. Google Scholar

[19]

L. J. Ji and J. X. Yin, Construction of new orthogonal arrays and covering arrays of strength three, J. Combin. Theory Ser. A, 117 (2010), 236-247.  doi: 10.1016/j.jcta.2009.06.002.  Google Scholar

[20]

R. Jozsa and N. Linden, On the role of entanglement in quantum computational speed-up, Proc. R. Soc. A, 459 (2003), 2011-2032.  doi: 10.1098/rspa.2002.1097.  Google Scholar

[21]

M. S. Li and Y. L. Wang, K-uniform quantum states arising from orthogonal arrays, Phy. Rev. A, 99 (2019), 042332, 1–7.  Google Scholar

[22]

H. K. Lo, M. Curty and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108 (2012), 130503, 1–5. doi: 10.1103/PhysRevLett.108.130503.  Google Scholar

[23]

S. Q. PangX. ZhangX. Lin and Q. J. Zhang, Two and three-uniform states from irredundant orthogonal arrays, NPJ Quantum Inf., 5 (2019), 1-10.  doi: 10.1038/s41534-019-0165-8.  Google Scholar

[24]

A. J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quan-tum evolutions, Phys. Rev. A, 69 (2004), 052330, 1–10. Google Scholar

[25]

E. Seiden and R. Zemach, On orthogonal arrays, Ann. Math. Stat., 37 (1966), 1355-1370.  doi: 10.1214/aoms/1177699280.  Google Scholar

[26]

C. ShiY. Tang and J. X. Yin, The equivalence between optimal detecting arrays and super-simple OAs, Des. Codes Crypogr., 62 (2012), 131-142.  doi: 10.1007/s10623-011-9498-9.  Google Scholar

[27]

Y. J. Zang, H. J. Zuo and Z. H. Tian, 3-uniform states and orthogonal arrays of strength 3, Int. J. Quantum Information, 17 (2019), 1950003, 1–8. doi: 10.1142/S0219749919500035.  Google Scholar

[28]

X. W. ZhaI. Ahmed and Y. P. Zhang, 3-uniform states and orthognal arrays, Results Phys., 6 (2016), 26-28.   Google Scholar

[29]

X. W. Zha, C. Z. Yuan and Y. P. Zhang, Generalized criterion for a maximally multi-qubit entangled states, Laser Phys. Lett., 10 (2013), 045201, 1–6. doi: 10.1088/1612-2011/10/4/045201.  Google Scholar

Table 1.  Correspondence between parameters of OAs and quantum states
Parameters Orthogonal array Multipartite quantum state $|\Phi\rangle$
$r$ Runs Number of linear terms in the state
$ k$ Factors Number of qudits
$v$ Levels Dimension of the subsystem ($v=2$ for qubits)
$t$ Strength Class of entanglement ($t$-uniform)
Parameters Orthogonal array Multipartite quantum state $|\Phi\rangle$
$r$ Runs Number of linear terms in the state
$ k$ Factors Number of qudits
$v$ Levels Dimension of the subsystem ($v=2$ for qubits)
$t$ Strength Class of entanglement ($t$-uniform)
[1]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[2]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[5]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[6]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[7]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[8]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[9]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[10]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[11]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[12]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[13]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[14]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[15]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[18]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]