doi: 10.3934/amc.2020111

New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings

1. 

Department of Algebra, Uzhgorod National University, Uzhgorod, Ukraine

2. 

Department of Mathematical and Physical Sciences, University of Chester, UK

3. 

Harmony School of Technology, Houston, TX 77038, USA

Received  March 2020 Published  September 2020

Many generator matrices for constructing extremal binary self-dual codes of different lengths have the form $ G = (I_n \ | \ A), $ where $ I_n $ is the $ n \times n $ identity matrix and $ A $ is the $ n \times n $ matrix fully determined by the first row. In this work, we define a generator matrix in which $ A $ is a block matrix, where the blocks come from group rings and also, $ A $ is not fully determined by the elements appearing in the first row. By applying our construction over $ \mathbb{F}_2+u\mathbb{F}_2 $ and by employing the extension method for codes, we were able to construct new extremal binary self-dual codes of length 68. Additionally, by employing a generalised neighbour method to the codes obtained, we were able to construct many new binary self-dual $ [68, 34, 12] $-codes with the rare parameters $ \gamma = 7, 8 $ and $ 9 $ in $ W_{68, 2}. $ In particular, we find 92 new binary self-dual $ [68, 34, 12] $-codes.

Citation: Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, doi: 10.3934/amc.2020111
References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[4]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[5]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., (2019). doi: 10.1007/s12095-019-00380-8.  Google Scholar

[6]

S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Comm., (2019). doi: 10.1016/j.ffa.2020.101692.  Google Scholar

[7]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des., Codes and Cryptog., Designs, 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[10]

S. T. DoughertyJ. L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[11]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Comm.. doi: 10.3934/amc.2020077.  Google Scholar

[12]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., (2020). doi: 10.1016/j.ffa.2020.101727.  Google Scholar

[13]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[14]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.  Google Scholar

[15]

T. Hurley, "Group Rings and Rings of Matrices", J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[16]

S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.  Google Scholar

[17]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.  Google Scholar

[18]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.  Google Scholar

[19]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[20]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[21]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[22]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). doi: 10.1007/s00200-019-00403-0.  Google Scholar

show all references

References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[4]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[5]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., (2019). doi: 10.1007/s12095-019-00380-8.  Google Scholar

[6]

S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Comm., (2019). doi: 10.1016/j.ffa.2020.101692.  Google Scholar

[7]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des., Codes and Cryptog., Designs, 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[10]

S. T. DoughertyJ. L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[11]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Comm.. doi: 10.3934/amc.2020077.  Google Scholar

[12]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., (2020). doi: 10.1016/j.ffa.2020.101727.  Google Scholar

[13]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[14]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.  Google Scholar

[15]

T. Hurley, "Group Rings and Rings of Matrices", J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[16]

S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.  Google Scholar

[17]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.  Google Scholar

[18]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.  Google Scholar

[19]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[20]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[21]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[22]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). doi: 10.1007/s00200-019-00403-0.  Google Scholar

Table 1.  Codes of length 32 via Theorem 3.1 with the cyclic group $ C_8 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_1 $ $ (0, 0, 0, 0, 0, 1, 1, 1) $ $ (0, 0, 0, 0, 0, 1, 0, 1) $ $ (0, 1, 0, 1, 0, 0, 1, 0) $ $ 2^93^25 $ $ [32, 16, 6]_I $
$ C_2 $ $ (0, 0, 0, 0, 1, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 1, 1) $ $ (0, 0, 0, 1, 1, 1, 1, 0) $ $ 2^5 $ $ [32, 16, 6]_I $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_1 $ $ (0, 0, 0, 0, 0, 1, 1, 1) $ $ (0, 0, 0, 0, 0, 1, 0, 1) $ $ (0, 1, 0, 1, 0, 0, 1, 0) $ $ 2^93^25 $ $ [32, 16, 6]_I $
$ C_2 $ $ (0, 0, 0, 0, 1, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 1, 1) $ $ (0, 0, 0, 1, 1, 1, 1, 0) $ $ 2^5 $ $ [32, 16, 6]_I $
Table 2.  Codes of length 64 from $ R_1 $ lifts of $ C_1 $ and $ C_2 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_1 $ $ C_2 $ $ (u, 0, 0, u, 1, 1, u+1, 1) $ $ (0, 0, 1, u+1, 0, u+1, 1, 1) $ $ (0, u, u, u+1, u+1, u+1, 1, 0) $ $ 2^5 $ $ \beta=0 $
$ I_2 $ $ C_1 $ $ (0, u, 0, 0, 0, 1, 1, u+1) $ $ (0, u, 0, u, u, 1, 0, 1) $ $ (0, 1, 0, u+1, 0, 0, 1, u) $ $ 2^7 $ $ \beta=80 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_1 $ $ C_2 $ $ (u, 0, 0, u, 1, 1, u+1, 1) $ $ (0, 0, 1, u+1, 0, u+1, 1, 1) $ $ (0, u, u, u+1, u+1, u+1, 1, 0) $ $ 2^5 $ $ \beta=0 $
$ I_2 $ $ C_1 $ $ (0, u, 0, 0, 0, 1, 1, u+1) $ $ (0, u, 0, u, u, 1, 0, 1) $ $ (0, 1, 0, u+1, 0, 0, 1, u) $ $ 2^7 $ $ \beta=80 $
Table 3.  Codes of length 32 via Theorem 3.1 with the dihedral group $ D_8 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_3 $ $ (0, 0, 0, 1, 0, 0, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 0, 1) $ $ (1, 1, 0, 1, 0, 1, 1, 0) $ $ 2^33 $ $ [32, 16, 6]_I $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_3 $ $ (0, 0, 0, 1, 0, 0, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 0, 1) $ $ (1, 1, 0, 1, 0, 1, 1, 0) $ $ 2^33 $ $ [32, 16, 6]_I $
Table 4.  Codes of length 64 from $ R_1 $ lifts of $ C_3 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_3 $ $ C_3 $ $ (0, u, u, 1, 0, 0, 1, 1) $ $ (0, 0, 1, u+1, u, 1, 0, 1) $ $ (u+1, u+1, 0, u+1, 0, 1, u+1, 0) $ $ 2^43 $ $ \beta=64 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_3 $ $ C_3 $ $ (0, u, u, 1, 0, 0, 1, 1) $ $ (0, 0, 1, u+1, u, 1, 0, 1) $ $ (u+1, u+1, 0, u+1, 0, 1, u+1, 0) $ $ 2^43 $ $ \beta=64 $
Table 5.  New codes of length 68 from Theorem 2.4
$ C_{68, i} $ Code $ (x_{17}, x_{18}, \dots , x_{32}) $ $ c $ $ \gamma $ $ \beta \ in\ W_{64, 2} $
$ C_{68, 1} $ $ I_{3} $ $ (u, u, 0, 1, 3, u, u, u, u, 3, u, 1, 0, 0, u, 3, u, 1, 0, 1, 1, 3, 3, 3, u, 0, 3, u, u, 1, 0, 0) $ $ 1 $ $ \boldsymbol{0} $ $ \boldsymbol{181} $
$ C_{68, 2} $ $ I_{3} $ $ (0, 3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 1, u, 0, u, 0, u, 0, u, 3, 0, 0, 1, 1, 1, 1, u, u, 1, 3, u, u) $ $ 3 $ $ \boldsymbol{1} $ $ \boldsymbol{185} $
$ C_{68, 3} $ $ I_{1} $ $ (0, 1, 1, u, u, 3, u, 1, 3, 3, 1, 0, 0, 3, 3, u, 1, 3, 3, u, u, 3, 0, u, 3, u, 3, u, 1, 3, 0, 0) $ $ 3 $ $ \boldsymbol{2} $ $ \boldsymbol{54} $
$ C_{68, 4} $ $ I_{2} $ $ (u, 3, 1, 3, 0, 0, 3, u, 0, 3, 0, u, u, u, 0, u, 3, 1, 0, 3, 0, 3, u, 1, 1, 1, 1, u, 0, 3, 0, 1) $ $ 1 $ $ \boldsymbol{2} $ $ \boldsymbol{202} $
$ C_{68, 5} $ $ I_{3} $ $ (u, u, u, 3, 0, 0, 1, u, 1, u, 1, 3, u, 0, 0, 3, 0, 1, u, 3, 0, 1, 0, 3, 1, 1, 0, 3, u, 3, 0, 1) $ $ 1 $ $ \boldsymbol{3} $ $ \boldsymbol{179} $
$ C_{68, 6} $ $ I_{3} $ $ (u, 0, 0, 1, 1, 0, 1, 0, 3, 3, u, 0, 1, 0, 3, 3, 1, 0, 3, 0, 3, 3, 1, u, 1, u, 1, u, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{189} $
$ C_{68, 7} $ $ I_{3} $ $ (0, 3, 0, 1, u, 3, u, 3, 0, 1, 0, 3, 0, 3, 0, 0, 1, u, u, 1, 0, u, 1, 0, u, 0, u, 1, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{198} $
$ C_{68, i} $ Code $ (x_{17}, x_{18}, \dots , x_{32}) $ $ c $ $ \gamma $ $ \beta \ in\ W_{64, 2} $
$ C_{68, 1} $ $ I_{3} $ $ (u, u, 0, 1, 3, u, u, u, u, 3, u, 1, 0, 0, u, 3, u, 1, 0, 1, 1, 3, 3, 3, u, 0, 3, u, u, 1, 0, 0) $ $ 1 $ $ \boldsymbol{0} $ $ \boldsymbol{181} $
$ C_{68, 2} $ $ I_{3} $ $ (0, 3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 1, u, 0, u, 0, u, 0, u, 3, 0, 0, 1, 1, 1, 1, u, u, 1, 3, u, u) $ $ 3 $ $ \boldsymbol{1} $ $ \boldsymbol{185} $
$ C_{68, 3} $ $ I_{1} $ $ (0, 1, 1, u, u, 3, u, 1, 3, 3, 1, 0, 0, 3, 3, u, 1, 3, 3, u, u, 3, 0, u, 3, u, 3, u, 1, 3, 0, 0) $ $ 3 $ $ \boldsymbol{2} $ $ \boldsymbol{54} $
$ C_{68, 4} $ $ I_{2} $ $ (u, 3, 1, 3, 0, 0, 3, u, 0, 3, 0, u, u, u, 0, u, 3, 1, 0, 3, 0, 3, u, 1, 1, 1, 1, u, 0, 3, 0, 1) $ $ 1 $ $ \boldsymbol{2} $ $ \boldsymbol{202} $
$ C_{68, 5} $ $ I_{3} $ $ (u, u, u, 3, 0, 0, 1, u, 1, u, 1, 3, u, 0, 0, 3, 0, 1, u, 3, 0, 1, 0, 3, 1, 1, 0, 3, u, 3, 0, 1) $ $ 1 $ $ \boldsymbol{3} $ $ \boldsymbol{179} $
$ C_{68, 6} $ $ I_{3} $ $ (u, 0, 0, 1, 1, 0, 1, 0, 3, 3, u, 0, 1, 0, 3, 3, 1, 0, 3, 0, 3, 3, 1, u, 1, u, 1, u, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{189} $
$ C_{68, 7} $ $ I_{3} $ $ (0, 3, 0, 1, u, 3, u, 3, 0, 1, 0, 3, 0, 3, 0, 0, 1, u, u, 1, 0, u, 1, 0, u, 0, u, 1, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{198} $
Table 6.  $ i^{th} $ neighbour of $ \mathcal{N}_{(0)} $
$ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $ $ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $
$ 0 $ $ \mathcal{N}_{(1)} $ $ (1110000001001111010001001000010000) $ $ 3 $ $ 180 $ $ 1 $ $ \mathcal{N}_{(2)} $ $ (0110111111100111000010000110011111) $ $ 4 $ $ 177 $
$ 2 $ $ \mathcal{N}_{(3)} $ $ (1111110110010011100101001000101111) $ $ 5 $ $ 169 $ $ 3 $ $ \mathcal{N}_{(4)} $ $ (0100000000110011110000010000011110) $ $ 6 $ $ 191 $
$ 4 $ $ \mathcal{N}_{(5)} $ $ (0100000000001101110010001110000110) $ $ 6 $ $ 199 $ $ 5 $ $ \mathcal{N}_{(6)} $ $ (0000100000001100010011001110000111) $ $ 7 $ $ 199 $
$ 6 $ $ \mathcal{N}_{(7)} $ $ (1011111101001111000101010111111010) $ $ \textbf{7} $ $ \textbf{209} $ $ 7 $ $ \mathcal{N}_{(8)} $ $ (1110011111110110000101111101111110) $ $ \textbf{7} $ $ \textbf{220} $
$ 8 $ $ \mathcal{N}_{(9)} $ $ (1100101001011011001101000000111100) $ $ 8 $ $ 212 $ $ 9 $ $ \mathcal{N}_{(10)} $ $ (1110110100111111000010011111011000) $ $ \textbf{8} $ $ \textbf{226} $
$ 10 $ $ \mathcal{N}_{(11)} $ $ (1011101011111010111010001000101000) $ $ \textbf{8} $ $ \textbf{233} $ $ 11 $ $ \mathcal{N}_{(12)} $ $ (1101100000000101110010111111001110) $ $ 9 $ $ 213 $
$ 12 $ $ \mathcal{N}_{(13)} $ $ (0111110101110100100110100100000111) $ $ 9 $ $ 222 $ $ 13 $ $ \mathcal{N}_{(14)} $ $ (1100011000000000100101010101100010) $ $ \textbf{9} $ $ \textbf{229} $
$ 14 $ $ \mathcal{N}_{(15)} $ $ (0100111000100000110010100011000100) $ $ \textbf{9} $ $ \textbf{235} $ $ 15 $ $ \mathcal{N}_{(16)} $ $ (0000111011111101001101111010001101) $ $ \textbf{9} $ $ \textbf{236} $
$ 16 $ $ \mathcal{N}_{(17)} $ $ (0110010111000111101001101101101110) $ $ \textbf{9} $ $ \textbf{240} $ $ 17 $ $ \mathcal{N}_{(18)} $ $ (0001101000010111100111111110001001) $ $ \textbf{9} $ $ \textbf{243} $
$ 18 $ $ \mathcal{N}_{(19)} $ $ (1111010011001111000010010001010001) $ $ \textbf{9} $ $ \textbf{247} $ $ 19 $ $ \mathcal{N}_{(20)} $ $ (0001000000100010001011101011110000) $ $ \textbf{8} $ $ \textbf{234} $
$ 20 $ $ \mathcal{N}_{(21)} $ $ (0110110001101011101000111100110001) $ $ \textbf{8} $ $ \textbf{245} $ $ 21 $ $ \mathcal{N}_{(22)} $ $ (1000011100010110100110011011000011) $ $ \textbf{8} $ $ \textbf{250} $
$ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $ $ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $
$ 0 $ $ \mathcal{N}_{(1)} $ $ (1110000001001111010001001000010000) $ $ 3 $ $ 180 $ $ 1 $ $ \mathcal{N}_{(2)} $ $ (0110111111100111000010000110011111) $ $ 4 $ $ 177 $
$ 2 $ $ \mathcal{N}_{(3)} $ $ (1111110110010011100101001000101111) $ $ 5 $ $ 169 $ $ 3 $ $ \mathcal{N}_{(4)} $ $ (0100000000110011110000010000011110) $ $ 6 $ $ 191 $
$ 4 $ $ \mathcal{N}_{(5)} $ $ (0100000000001101110010001110000110) $ $ 6 $ $ 199 $ $ 5 $ $ \mathcal{N}_{(6)} $ $ (0000100000001100010011001110000111) $ $ 7 $ $ 199 $
$ 6 $ $ \mathcal{N}_{(7)} $ $ (1011111101001111000101010111111010) $ $ \textbf{7} $ $ \textbf{209} $ $ 7 $ $ \mathcal{N}_{(8)} $ $ (1110011111110110000101111101111110) $ $ \textbf{7} $ $ \textbf{220} $
$ 8 $ $ \mathcal{N}_{(9)} $ $ (1100101001011011001101000000111100) $ $ 8 $ $ 212 $ $ 9 $ $ \mathcal{N}_{(10)} $ $ (1110110100111111000010011111011000) $ $ \textbf{8} $ $ \textbf{226} $
$ 10 $ $ \mathcal{N}_{(11)} $ $ (1011101011111010111010001000101000) $ $ \textbf{8} $ $ \textbf{233} $ $ 11 $ $ \mathcal{N}_{(12)} $ $ (1101100000000101110010111111001110) $ $ 9 $ $ 213 $
$ 12 $ $ \mathcal{N}_{(13)} $ $ (0111110101110100100110100100000111) $ $ 9 $ $ 222 $ $ 13 $ $ \mathcal{N}_{(14)} $ $ (1100011000000000100101010101100010) $ $ \textbf{9} $ $ \textbf{229} $
$ 14 $ $ \mathcal{N}_{(15)} $ $ (0100111000100000110010100011000100) $ $ \textbf{9} $ $ \textbf{235} $ $ 15 $ $ \mathcal{N}_{(16)} $ $ (0000111011111101001101111010001101) $ $ \textbf{9} $ $ \textbf{236} $
$ 16 $ $ \mathcal{N}_{(17)} $ $ (0110010111000111101001101101101110) $ $ \textbf{9} $ $ \textbf{240} $ $ 17 $ $ \mathcal{N}_{(18)} $ $ (0001101000010111100111111110001001) $ $ \textbf{9} $ $ \textbf{243} $
$ 18 $ $ \mathcal{N}_{(19)} $ $ (1111010011001111000010010001010001) $ $ \textbf{9} $ $ \textbf{247} $ $ 19 $ $ \mathcal{N}_{(20)} $ $ (0001000000100010001011101011110000) $ $ \textbf{8} $ $ \textbf{234} $
$ 20 $ $ \mathcal{N}_{(21)} $ $ (0110110001101011101000111100110001) $ $ \textbf{8} $ $ \textbf{245} $ $ 21 $ $ \mathcal{N}_{(22)} $ $ (1000011100010110100110011011000011) $ $ \textbf{8} $ $ \textbf{250} $
Table 7.  Neighbours of $ \mathcal{N}_{(7)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 7 $ $ 1 $ $ (0001101011101000000010101100100000) $ $ \textbf{7} $ $ \textbf{200} $ $ 7 $ $ 2 $ $ (1011110000101000000000000110110010) $ $ \textbf{7} $ $ \textbf{201} $
$ 7 $ $ 3 $ $ (1010110010100001100100011110001110) $ $ \textbf{7} $ $ \textbf{202} $ $ 7 $ $ 4 $ $ (0001001110011000100100000010000111) $ $ \textbf{7} $ $ \textbf{204} $
$ 7 $ $ 5 $ $ (0110000000101001011011010010111000) $ $ \textbf{7} $ $ \textbf{205} $ $ 7 $ $ 6 $ $ (1101010010010101110001000011001000) $ $ \textbf{7} $ $ \textbf{206} $
$ 7 $ $ 7 $ $ (0000101100001000100101011000010101) $ $ \textbf{7} $ $ \textbf{207} $ $ 7 $ $ 8 $ $ (1101100101111100101110100100000011) $ $ \textbf{7} $ $ \textbf{212} $
$ 7 $ $ 9 $ $ (1111011000001111101001111011111111) $ $ \textbf{7} $ $ \textbf{214} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 7 $ $ 1 $ $ (0001101011101000000010101100100000) $ $ \textbf{7} $ $ \textbf{200} $ $ 7 $ $ 2 $ $ (1011110000101000000000000110110010) $ $ \textbf{7} $ $ \textbf{201} $
$ 7 $ $ 3 $ $ (1010110010100001100100011110001110) $ $ \textbf{7} $ $ \textbf{202} $ $ 7 $ $ 4 $ $ (0001001110011000100100000010000111) $ $ \textbf{7} $ $ \textbf{204} $
$ 7 $ $ 5 $ $ (0110000000101001011011010010111000) $ $ \textbf{7} $ $ \textbf{205} $ $ 7 $ $ 6 $ $ (1101010010010101110001000011001000) $ $ \textbf{7} $ $ \textbf{206} $
$ 7 $ $ 7 $ $ (0000101100001000100101011000010101) $ $ \textbf{7} $ $ \textbf{207} $ $ 7 $ $ 8 $ $ (1101100101111100101110100100000011) $ $ \textbf{7} $ $ \textbf{212} $
$ 7 $ $ 9 $ $ (1111011000001111101001111011111111) $ $ \textbf{7} $ $ \textbf{214} $
Table 8.  Neighbours of $ \mathcal{N}_{(8)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 8 $ $ 10 $ $ (0101101001001001100111000010001010) $ $ \textbf{6} $ $ \textbf{205} $ $ 8 $ $ 11 $ $ (0000111000000101110110010000000101) $ $ \textbf{6} $ $ \textbf{211} $
$ 8 $ $ 12 $ $ (1000110101001001010000000111111011) $ $ \textbf{7} $ $ \textbf{208} $ $ 8 $ $ 13 $ $ (1100001010000110010100101000001100) $ $ \textbf{7} $ $ \textbf{211} $
$ 8 $ $ 14 $ $ (0000011000010001001000011101100110) $ $ \textbf{7} $ $ \textbf{213} $ $ 8 $ $ 15 $ $ (0011000110000110101101001101111011) $ $ \textbf{7} $ $ \textbf{215} $
$ 8 $ $ 16 $ $ (0100001111110010110100000101101010) $ $ \textbf{7} $ $ \textbf{216} $ $ 8 $ $ 17 $ $ (1111101111010101000001000100011110) $ $ \textbf{7} $ $ \textbf{218} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 8 $ $ 10 $ $ (0101101001001001100111000010001010) $ $ \textbf{6} $ $ \textbf{205} $ $ 8 $ $ 11 $ $ (0000111000000101110110010000000101) $ $ \textbf{6} $ $ \textbf{211} $
$ 8 $ $ 12 $ $ (1000110101001001010000000111111011) $ $ \textbf{7} $ $ \textbf{208} $ $ 8 $ $ 13 $ $ (1100001010000110010100101000001100) $ $ \textbf{7} $ $ \textbf{211} $
$ 8 $ $ 14 $ $ (0000011000010001001000011101100110) $ $ \textbf{7} $ $ \textbf{213} $ $ 8 $ $ 15 $ $ (0011000110000110101101001101111011) $ $ \textbf{7} $ $ \textbf{215} $
$ 8 $ $ 16 $ $ (0100001111110010110100000101101010) $ $ \textbf{7} $ $ \textbf{216} $ $ 8 $ $ 17 $ $ (1111101111010101000001000100011110) $ $ \textbf{7} $ $ \textbf{218} $
Table 9.  Neighbours of $ \mathcal{N}_{(10)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 10 $ $ 18 $ $ (1000111101011101000010001111000100) $ $ \textbf{8} $ $ \textbf{222} $ $ 10 $ $ 19 $ $ (1000001100101001110001001010110111) $ $ \textbf{8} $ $ \textbf{223} $
$ 10 $ $ 20 $ $ (0000100110010101011101101001100110) $ $ \textbf{8} $ $ \textbf{227} $ $ 10 $ $ 21 $ $ (1011001101010011010111011000101010) $ $ \textbf{8} $ $ \textbf{229} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 10 $ $ 18 $ $ (1000111101011101000010001111000100) $ $ \textbf{8} $ $ \textbf{222} $ $ 10 $ $ 19 $ $ (1000001100101001110001001010110111) $ $ \textbf{8} $ $ \textbf{223} $
$ 10 $ $ 20 $ $ (0000100110010101011101101001100110) $ $ \textbf{8} $ $ \textbf{227} $ $ 10 $ $ 21 $ $ (1011001101010011010111011000101010) $ $ \textbf{8} $ $ \textbf{229} $
Table 10.  Neighbours of $ \mathcal{N}_{(11)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 11 $ $ 22 $ $ (1010110110000101110101111100110110) $ $ \textbf{7} $ $ \textbf{221} $ $ 11 $ $ 23 $ $ (0000001101000001110010110101100000) $ $ \textbf{7} $ $ \textbf{222} $
$ 11 $ $ 24 $ $ (1101010100100000111010001000010011) $ $ \textbf{8} $ $ \textbf{224} $ $ 11 $ $ 25 $ $ (0000010011001000010100011111011111) $ $ \textbf{8} $ $ \textbf{225} $
$ 11 $ $ 26 $ $ (1110111110110010111011101101101110) $ $ \textbf{8} $ $ \textbf{228} $ $ 11 $ $ 27 $ $ (1001100110100111000010100000100101) $ $ \textbf{8} $ $ \textbf{230} $
$ 11 $ $ 28 $ $ (0000110001111000001001000011101000) $ $ \textbf{8} $ $ \textbf{231} $ $ 11 $ $ 29 $ $ (1001011111010011000001100001010000) $ $ \textbf{8} $ $ \textbf{232} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 11 $ $ 22 $ $ (1010110110000101110101111100110110) $ $ \textbf{7} $ $ \textbf{221} $ $ 11 $ $ 23 $ $ (0000001101000001110010110101100000) $ $ \textbf{7} $ $ \textbf{222} $
$ 11 $ $ 24 $ $ (1101010100100000111010001000010011) $ $ \textbf{8} $ $ \textbf{224} $ $ 11 $ $ 25 $ $ (0000010011001000010100011111011111) $ $ \textbf{8} $ $ \textbf{225} $
$ 11 $ $ 26 $ $ (1110111110110010111011101101101110) $ $ \textbf{8} $ $ \textbf{228} $ $ 11 $ $ 27 $ $ (1001100110100111000010100000100101) $ $ \textbf{8} $ $ \textbf{230} $
$ 11 $ $ 28 $ $ (0000110001111000001001000011101000) $ $ \textbf{8} $ $ \textbf{231} $ $ 11 $ $ 29 $ $ (1001011111010011000001100001010000) $ $ \textbf{8} $ $ \textbf{232} $
Table 11.  Neighbours of $ \mathcal{N}_{(12)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 12 $ $ 30 $ $ (1000100110000001010101010100001001) $ $ \textbf{9} $ $ \textbf{191} $ $ 12 $ $ 31 $ $ (0111010100101000000001100101011010) $ $ \textbf{9} $ $ \textbf{197} $
$ 12 $ $ 32 $ $ (1111100000101101001011110111000010) $ $ \textbf{9} $ $ \textbf{212} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 12 $ $ 30 $ $ (1000100110000001010101010100001001) $ $ \textbf{9} $ $ \textbf{191} $ $ 12 $ $ 31 $ $ (0111010100101000000001100101011010) $ $ \textbf{9} $ $ \textbf{197} $
$ 12 $ $ 32 $ $ (1111100000101101001011110111000010) $ $ \textbf{9} $ $ \textbf{212} $
Table 12.  Neighbour of $ \mathcal{N}_{(14)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 14 $ $ 33 $ $ (1011110001101000100111010000010000) $ $ \textbf{9} $ $ \textbf{227} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 14 $ $ 33 $ $ (1011110001101000100111010000010000) $ $ \textbf{9} $ $ \textbf{227} $
Table 13.  Neighbours of $ \mathcal{N}_{(15)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 15 $ $ 34 $ $ (1011000011111110011101011000000101) $ $ \textbf{9} $ $ \textbf{231} $ $ 15 $ $ 35 $ $ (1111110111110000010110000100010011) $ $ \textbf{9} $ $ \textbf{232} $
$ 15 $ $ 36 $ $ (0011000011010010100011010000111001) $ $ \textbf{9} $ $ \textbf{233} $ $ 15 $ $ 37 $ $ (0000000000111100000000101100111101) $ $ \textbf{9} $ $ \textbf{234} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 15 $ $ 34 $ $ (1011000011111110011101011000000101) $ $ \textbf{9} $ $ \textbf{231} $ $ 15 $ $ 35 $ $ (1111110111110000010110000100010011) $ $ \textbf{9} $ $ \textbf{232} $
$ 15 $ $ 36 $ $ (0011000011010010100011010000111001) $ $ \textbf{9} $ $ \textbf{233} $ $ 15 $ $ 37 $ $ (0000000000111100000000101100111101) $ $ \textbf{9} $ $ \textbf{234} $
Table 14.  Neighbours of $ \mathcal{N}_{(17)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 17 $ $ 38 $ $ (0110000100000010110010110000110100) $ $ \textbf{9} $ $ \textbf{237} $ $ 17 $ $ 39 $ $ (0011111001100000111100111101010010) $ $ \textbf{9} $ $ \textbf{238} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 17 $ $ 38 $ $ (0110000100000010110010110000110100) $ $ \textbf{9} $ $ \textbf{237} $ $ 17 $ $ 39 $ $ (0011111001100000111100111101010010) $ $ \textbf{9} $ $ \textbf{238} $
Table 15.  Neighbours of $ \mathcal{N}_{(18)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 18 $ $ 40 $ $ (0110010110000001001110111010011100) $ $ \textbf{9} $ $ \textbf{239} $ $ 18 $ $ 41 $ $ (1111000010111111010100101000111101) $ $ \textbf{9} $ $ \textbf{241} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 18 $ $ 40 $ $ (0110010110000001001110111010011100) $ $ \textbf{9} $ $ \textbf{239} $ $ 18 $ $ 41 $ $ (1111000010111111010100101000111101) $ $ \textbf{9} $ $ \textbf{241} $
Table 16.  Neighbours of $ \mathcal{N}_{(19)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 19 $ $ 42 $ $ (1011110110001100110101001011001010) $ $ \textbf{9} $ $ \textbf{242} $ $ 19 $ $ 43 $ $ (0101010111011010111100000111011110) $ $ \textbf{9} $ $ \textbf{244} $
$ 19 $ $ 44 $ $ (1010110011000110001101001010010000) $ $ \textbf{9} $ $ \textbf{246} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 19 $ $ 42 $ $ (1011110110001100110101001011001010) $ $ \textbf{9} $ $ \textbf{242} $ $ 19 $ $ 43 $ $ (0101010111011010111100000111011110) $ $ \textbf{9} $ $ \textbf{244} $
$ 19 $ $ 44 $ $ (1010110011000110001101001010010000) $ $ \textbf{9} $ $ \textbf{246} $
Table 17.  Neighbours of $ \mathcal{N}_{(20)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 20 $ $ 45 $ $ (1111111110101111010101000110001101) $ $ \textbf{8} $ $ \textbf{236} $ $ 20 $ $ 46 $ $ (1010000010110000100011110101111001) $ $ \textbf{8} $ $ \textbf{239} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 20 $ $ 45 $ $ (1111111110101111010101000110001101) $ $ \textbf{8} $ $ \textbf{236} $ $ 20 $ $ 46 $ $ (1010000010110000100011110101111001) $ $ \textbf{8} $ $ \textbf{239} $
Table 18.  Neighbours of $ \mathcal{N}_{(21)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 21 $ $ 47 $ $ (0100000110001011000001000101101010) $ $ \textbf{6} $ $ \textbf{208} $ $ 21 $ $ 48 $ $ (1101111000000001010010000110110001) $ $ \textbf{6} $ $ \textbf{209} $
$ 21 $ $ 49 $ $ (1011101011101010010101111101000101) $ $ \textbf{6} $ $ \textbf{212} $ $ 21 $ $ 50 $ $ (1111110111000100010010111011100000) $ $ \textbf{6} $ $ \textbf{214} $
$ 21 $ $ 51 $ $ (1011111101010010111011101111111100) $ $ \textbf{6} $ $ \textbf{215} $ $ 21 $ $ 52 $ $ (0000000001100001001001100111011100) $ $ \textbf{6} $ $ \textbf{218} $
$ 21 $ $ 53 $ $ (1111011001110010100001101011011011) $ $ \textbf{6} $ $ \textbf{220} $ $ 21 $ $ 54 $ $ (0100000001010101001001101001000011) $ $ \textbf{7} $ $ \textbf{219} $
$ 21 $ $ 55 $ $ (1100000000000001110100001001100111) $ $ \textbf{7} $ $ \textbf{223} $ $ 21 $ $ 56 $ $ (0000001101000100110101111100001111) $ $ \textbf{7} $ $ \textbf{225} $
$ 21 $ $ 57 $ $ (1111011001111010111110100111110110) $ $ \textbf{7} $ $ \textbf{226} $ $ 21 $ $ 58 $ $ (0010011000011000001000111001000101) $ $ \textbf{7} $ $ \textbf{227} $
$ 21 $ $ 59 $ $ (1001010101101111101110000000000011) $ $ \textbf{7} $ $ \textbf{230} $ $ 21 $ $ 60 $ $ (1111110101100000100011001110100110) $ $ \textbf{8} $ $ \textbf{235} $
$ 21 $ $ 61 $ $ (0110000110110100100100101111100100) $ $ \textbf{8} $ $ \textbf{238} $ $ 21 $ $ 62 $ $ (1010010010111110111001111011100010) $ $ \textbf{8} $ $ \textbf{240} $
$ 21 $ $ 63 $ $ (1101011100111011010011111101111110) $ $ \textbf{8} $ $ \textbf{241} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 21 $ $ 47 $ $ (0100000110001011000001000101101010) $ $ \textbf{6} $ $ \textbf{208} $ $ 21 $ $ 48 $ $ (1101111000000001010010000110110001) $ $ \textbf{6} $ $ \textbf{209} $
$ 21 $ $ 49 $ $ (1011101011101010010101111101000101) $ $ \textbf{6} $ $ \textbf{212} $ $ 21 $ $ 50 $ $ (1111110111000100010010111011100000) $ $ \textbf{6} $ $ \textbf{214} $
$ 21 $ $ 51 $ $ (1011111101010010111011101111111100) $ $ \textbf{6} $ $ \textbf{215} $ $ 21 $ $ 52 $ $ (0000000001100001001001100111011100) $ $ \textbf{6} $ $ \textbf{218} $
$ 21 $ $ 53 $ $ (1111011001110010100001101011011011) $ $ \textbf{6} $ $ \textbf{220} $ $ 21 $ $ 54 $ $ (0100000001010101001001101001000011) $ $ \textbf{7} $ $ \textbf{219} $
$ 21 $ $ 55 $ $ (1100000000000001110100001001100111) $ $ \textbf{7} $ $ \textbf{223} $ $ 21 $ $ 56 $ $ (0000001101000100110101111100001111) $ $ \textbf{7} $ $ \textbf{225} $
$ 21 $ $ 57 $ $ (1111011001111010111110100111110110) $ $ \textbf{7} $ $ \textbf{226} $ $ 21 $ $ 58 $ $ (0010011000011000001000111001000101) $ $ \textbf{7} $ $ \textbf{227} $
$ 21 $ $ 59 $ $ (1001010101101111101110000000000011) $ $ \textbf{7} $ $ \textbf{230} $ $ 21 $ $ 60 $ $ (1111110101100000100011001110100110) $ $ \textbf{8} $ $ \textbf{235} $
$ 21 $ $ 61 $ $ (0110000110110100100100101111100100) $ $ \textbf{8} $ $ \textbf{238} $ $ 21 $ $ 62 $ $ (1010010010111110111001111011100010) $ $ \textbf{8} $ $ \textbf{240} $
$ 21 $ $ 63 $ $ (1101011100111011010011111101111110) $ $ \textbf{8} $ $ \textbf{241} $
Table 19.  Neighbours of $ \mathcal{N}_{(22)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 22 $ $ 63 $ $ (0011111100111010011001010011100100) $ $ \textbf{5} $ $ \textbf{207} $ $ 22 $ $ 64 $ $ (1011111100101111100110111111111101) $ $ \textbf{6} $ $ \textbf{213} $
$ 22 $ $ 65 $ $ (1001011101001100101011001000110100) $ $ \textbf{6} $ $ \textbf{217} $ $ 22 $ $ 66 $ $ (0100111101000110110111101101111110) $ $ \textbf{6} $ $ \textbf{219} $
$ 22 $ $ 68 $ $ (1000010000111101010101110010010011) $ $ \textbf{7} $ $ \textbf{229} $ $ 22 $ $ 69 $ $ (0100000001011101000011001111110011) $ $ \textbf{8} $ $ \textbf{237} $
$ 22 $ $ 70 $ $ (1111111101001111101100000010100000) $ $ \textbf{8} $ $ \textbf{242} $ $ 22 $ $ 71 $ $ (0010000100001001100001001110111000) $ $ \textbf{8} $ $ \textbf{243} $
$ 22 $ $ 72 $ $ (1110110000001011011001101011011010) $ $ \textbf{8} $ $ \textbf{247} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 22 $ $ 63 $ $ (0011111100111010011001010011100100) $ $ \textbf{5} $ $ \textbf{207} $ $ 22 $ $ 64 $ $ (1011111100101111100110111111111101) $ $ \textbf{6} $ $ \textbf{213} $
$ 22 $ $ 65 $ $ (1001011101001100101011001000110100) $ $ \textbf{6} $ $ \textbf{217} $ $ 22 $ $ 66 $ $ (0100111101000110110111101101111110) $ $ \textbf{6} $ $ \textbf{219} $
$ 22 $ $ 68 $ $ (1000010000111101010101110010010011) $ $ \textbf{7} $ $ \textbf{229} $ $ 22 $ $ 69 $ $ (0100000001011101000011001111110011) $ $ \textbf{8} $ $ \textbf{237} $
$ 22 $ $ 70 $ $ (1111111101001111101100000010100000) $ $ \textbf{8} $ $ \textbf{242} $ $ 22 $ $ 71 $ $ (0010000100001001100001001110111000) $ $ \textbf{8} $ $ \textbf{243} $
$ 22 $ $ 72 $ $ (1110110000001011011001101011011010) $ $ \textbf{8} $ $ \textbf{247} $
[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[3]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[8]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[9]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (24)
  • HTML views (108)
  • Cited by (0)

[Back to Top]