doi: 10.3934/amc.2020111

New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings

1. 

Department of Algebra, Uzhgorod National University, Uzhgorod, Ukraine

2. 

Department of Mathematical and Physical Sciences, University of Chester, UK

3. 

Harmony School of Technology, Houston, TX 77038, USA

Received  March 2020 Published  September 2020

Many generator matrices for constructing extremal binary self-dual codes of different lengths have the form $ G = (I_n \ | \ A), $ where $ I_n $ is the $ n \times n $ identity matrix and $ A $ is the $ n \times n $ matrix fully determined by the first row. In this work, we define a generator matrix in which $ A $ is a block matrix, where the blocks come from group rings and also, $ A $ is not fully determined by the elements appearing in the first row. By applying our construction over $ \mathbb{F}_2+u\mathbb{F}_2 $ and by employing the extension method for codes, we were able to construct new extremal binary self-dual codes of length 68. Additionally, by employing a generalised neighbour method to the codes obtained, we were able to construct many new binary self-dual $ [68, 34, 12] $-codes with the rare parameters $ \gamma = 7, 8 $ and $ 9 $ in $ W_{68, 2}. $ In particular, we find 92 new binary self-dual $ [68, 34, 12] $-codes.

Citation: Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, doi: 10.3934/amc.2020111
References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[4]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[5]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., (2019). doi: 10.1007/s12095-019-00380-8.  Google Scholar

[6]

S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Comm., (2019). doi: 10.1016/j.ffa.2020.101692.  Google Scholar

[7]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des., Codes and Cryptog., Designs, 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[10]

S. T. DoughertyJ. L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[11]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Comm.. doi: 10.3934/amc.2020077.  Google Scholar

[12]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., (2020). doi: 10.1016/j.ffa.2020.101727.  Google Scholar

[13]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[14]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.  Google Scholar

[15]

T. Hurley, "Group Rings and Rings of Matrices", J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[16]

S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.  Google Scholar

[17]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.  Google Scholar

[18]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.  Google Scholar

[19]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[20]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[21]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[22]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). doi: 10.1007/s00200-019-00403-0.  Google Scholar

show all references

References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[4]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[5]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., (2019). doi: 10.1007/s12095-019-00380-8.  Google Scholar

[6]

S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Comm., (2019). doi: 10.1016/j.ffa.2020.101692.  Google Scholar

[7]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des., Codes and Cryptog., Designs, 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[10]

S. T. DoughertyJ. L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[11]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Comm.. doi: 10.3934/amc.2020077.  Google Scholar

[12]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., (2020). doi: 10.1016/j.ffa.2020.101727.  Google Scholar

[13]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[14]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.  Google Scholar

[15]

T. Hurley, "Group Rings and Rings of Matrices", J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[16]

S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.  Google Scholar

[17]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.  Google Scholar

[18]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.  Google Scholar

[19]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[20]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[21]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[22]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). doi: 10.1007/s00200-019-00403-0.  Google Scholar

Table 1.  Codes of length 32 via Theorem 3.1 with the cyclic group $ C_8 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_1 $ $ (0, 0, 0, 0, 0, 1, 1, 1) $ $ (0, 0, 0, 0, 0, 1, 0, 1) $ $ (0, 1, 0, 1, 0, 0, 1, 0) $ $ 2^93^25 $ $ [32, 16, 6]_I $
$ C_2 $ $ (0, 0, 0, 0, 1, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 1, 1) $ $ (0, 0, 0, 1, 1, 1, 1, 0) $ $ 2^5 $ $ [32, 16, 6]_I $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_1 $ $ (0, 0, 0, 0, 0, 1, 1, 1) $ $ (0, 0, 0, 0, 0, 1, 0, 1) $ $ (0, 1, 0, 1, 0, 0, 1, 0) $ $ 2^93^25 $ $ [32, 16, 6]_I $
$ C_2 $ $ (0, 0, 0, 0, 1, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 1, 1) $ $ (0, 0, 0, 1, 1, 1, 1, 0) $ $ 2^5 $ $ [32, 16, 6]_I $
Table 2.  Codes of length 64 from $ R_1 $ lifts of $ C_1 $ and $ C_2 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_1 $ $ C_2 $ $ (u, 0, 0, u, 1, 1, u+1, 1) $ $ (0, 0, 1, u+1, 0, u+1, 1, 1) $ $ (0, u, u, u+1, u+1, u+1, 1, 0) $ $ 2^5 $ $ \beta=0 $
$ I_2 $ $ C_1 $ $ (0, u, 0, 0, 0, 1, 1, u+1) $ $ (0, u, 0, u, u, 1, 0, 1) $ $ (0, 1, 0, u+1, 0, 0, 1, u) $ $ 2^7 $ $ \beta=80 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_1 $ $ C_2 $ $ (u, 0, 0, u, 1, 1, u+1, 1) $ $ (0, 0, 1, u+1, 0, u+1, 1, 1) $ $ (0, u, u, u+1, u+1, u+1, 1, 0) $ $ 2^5 $ $ \beta=0 $
$ I_2 $ $ C_1 $ $ (0, u, 0, 0, 0, 1, 1, u+1) $ $ (0, u, 0, u, u, 1, 0, 1) $ $ (0, 1, 0, u+1, 0, 0, 1, u) $ $ 2^7 $ $ \beta=80 $
Table 3.  Codes of length 32 via Theorem 3.1 with the dihedral group $ D_8 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_3 $ $ (0, 0, 0, 1, 0, 0, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 0, 1) $ $ (1, 1, 0, 1, 0, 1, 1, 0) $ $ 2^33 $ $ [32, 16, 6]_I $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_3 $ $ (0, 0, 0, 1, 0, 0, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 0, 1) $ $ (1, 1, 0, 1, 0, 1, 1, 0) $ $ 2^33 $ $ [32, 16, 6]_I $
Table 4.  Codes of length 64 from $ R_1 $ lifts of $ C_3 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_3 $ $ C_3 $ $ (0, u, u, 1, 0, 0, 1, 1) $ $ (0, 0, 1, u+1, u, 1, 0, 1) $ $ (u+1, u+1, 0, u+1, 0, 1, u+1, 0) $ $ 2^43 $ $ \beta=64 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_3 $ $ C_3 $ $ (0, u, u, 1, 0, 0, 1, 1) $ $ (0, 0, 1, u+1, u, 1, 0, 1) $ $ (u+1, u+1, 0, u+1, 0, 1, u+1, 0) $ $ 2^43 $ $ \beta=64 $
Table 5.  New codes of length 68 from Theorem 2.4
$ C_{68, i} $ Code $ (x_{17}, x_{18}, \dots , x_{32}) $ $ c $ $ \gamma $ $ \beta \ in\ W_{64, 2} $
$ C_{68, 1} $ $ I_{3} $ $ (u, u, 0, 1, 3, u, u, u, u, 3, u, 1, 0, 0, u, 3, u, 1, 0, 1, 1, 3, 3, 3, u, 0, 3, u, u, 1, 0, 0) $ $ 1 $ $ \boldsymbol{0} $ $ \boldsymbol{181} $
$ C_{68, 2} $ $ I_{3} $ $ (0, 3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 1, u, 0, u, 0, u, 0, u, 3, 0, 0, 1, 1, 1, 1, u, u, 1, 3, u, u) $ $ 3 $ $ \boldsymbol{1} $ $ \boldsymbol{185} $
$ C_{68, 3} $ $ I_{1} $ $ (0, 1, 1, u, u, 3, u, 1, 3, 3, 1, 0, 0, 3, 3, u, 1, 3, 3, u, u, 3, 0, u, 3, u, 3, u, 1, 3, 0, 0) $ $ 3 $ $ \boldsymbol{2} $ $ \boldsymbol{54} $
$ C_{68, 4} $ $ I_{2} $ $ (u, 3, 1, 3, 0, 0, 3, u, 0, 3, 0, u, u, u, 0, u, 3, 1, 0, 3, 0, 3, u, 1, 1, 1, 1, u, 0, 3, 0, 1) $ $ 1 $ $ \boldsymbol{2} $ $ \boldsymbol{202} $
$ C_{68, 5} $ $ I_{3} $ $ (u, u, u, 3, 0, 0, 1, u, 1, u, 1, 3, u, 0, 0, 3, 0, 1, u, 3, 0, 1, 0, 3, 1, 1, 0, 3, u, 3, 0, 1) $ $ 1 $ $ \boldsymbol{3} $ $ \boldsymbol{179} $
$ C_{68, 6} $ $ I_{3} $ $ (u, 0, 0, 1, 1, 0, 1, 0, 3, 3, u, 0, 1, 0, 3, 3, 1, 0, 3, 0, 3, 3, 1, u, 1, u, 1, u, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{189} $
$ C_{68, 7} $ $ I_{3} $ $ (0, 3, 0, 1, u, 3, u, 3, 0, 1, 0, 3, 0, 3, 0, 0, 1, u, u, 1, 0, u, 1, 0, u, 0, u, 1, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{198} $
$ C_{68, i} $ Code $ (x_{17}, x_{18}, \dots , x_{32}) $ $ c $ $ \gamma $ $ \beta \ in\ W_{64, 2} $
$ C_{68, 1} $ $ I_{3} $ $ (u, u, 0, 1, 3, u, u, u, u, 3, u, 1, 0, 0, u, 3, u, 1, 0, 1, 1, 3, 3, 3, u, 0, 3, u, u, 1, 0, 0) $ $ 1 $ $ \boldsymbol{0} $ $ \boldsymbol{181} $
$ C_{68, 2} $ $ I_{3} $ $ (0, 3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 1, u, 0, u, 0, u, 0, u, 3, 0, 0, 1, 1, 1, 1, u, u, 1, 3, u, u) $ $ 3 $ $ \boldsymbol{1} $ $ \boldsymbol{185} $
$ C_{68, 3} $ $ I_{1} $ $ (0, 1, 1, u, u, 3, u, 1, 3, 3, 1, 0, 0, 3, 3, u, 1, 3, 3, u, u, 3, 0, u, 3, u, 3, u, 1, 3, 0, 0) $ $ 3 $ $ \boldsymbol{2} $ $ \boldsymbol{54} $
$ C_{68, 4} $ $ I_{2} $ $ (u, 3, 1, 3, 0, 0, 3, u, 0, 3, 0, u, u, u, 0, u, 3, 1, 0, 3, 0, 3, u, 1, 1, 1, 1, u, 0, 3, 0, 1) $ $ 1 $ $ \boldsymbol{2} $ $ \boldsymbol{202} $
$ C_{68, 5} $ $ I_{3} $ $ (u, u, u, 3, 0, 0, 1, u, 1, u, 1, 3, u, 0, 0, 3, 0, 1, u, 3, 0, 1, 0, 3, 1, 1, 0, 3, u, 3, 0, 1) $ $ 1 $ $ \boldsymbol{3} $ $ \boldsymbol{179} $
$ C_{68, 6} $ $ I_{3} $ $ (u, 0, 0, 1, 1, 0, 1, 0, 3, 3, u, 0, 1, 0, 3, 3, 1, 0, 3, 0, 3, 3, 1, u, 1, u, 1, u, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{189} $
$ C_{68, 7} $ $ I_{3} $ $ (0, 3, 0, 1, u, 3, u, 3, 0, 1, 0, 3, 0, 3, 0, 0, 1, u, u, 1, 0, u, 1, 0, u, 0, u, 1, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{198} $
Table 6.  $ i^{th} $ neighbour of $ \mathcal{N}_{(0)} $
$ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $ $ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $
$ 0 $ $ \mathcal{N}_{(1)} $ $ (1110000001001111010001001000010000) $ $ 3 $ $ 180 $ $ 1 $ $ \mathcal{N}_{(2)} $ $ (0110111111100111000010000110011111) $ $ 4 $ $ 177 $
$ 2 $ $ \mathcal{N}_{(3)} $ $ (1111110110010011100101001000101111) $ $ 5 $ $ 169 $ $ 3 $ $ \mathcal{N}_{(4)} $ $ (0100000000110011110000010000011110) $ $ 6 $ $ 191 $
$ 4 $ $ \mathcal{N}_{(5)} $ $ (0100000000001101110010001110000110) $ $ 6 $ $ 199 $ $ 5 $ $ \mathcal{N}_{(6)} $ $ (0000100000001100010011001110000111) $ $ 7 $ $ 199 $
$ 6 $ $ \mathcal{N}_{(7)} $ $ (1011111101001111000101010111111010) $ $ \textbf{7} $ $ \textbf{209} $ $ 7 $ $ \mathcal{N}_{(8)} $ $ (1110011111110110000101111101111110) $ $ \textbf{7} $ $ \textbf{220} $
$ 8 $ $ \mathcal{N}_{(9)} $ $ (1100101001011011001101000000111100) $ $ 8 $ $ 212 $ $ 9 $ $ \mathcal{N}_{(10)} $ $ (1110110100111111000010011111011000) $ $ \textbf{8} $ $ \textbf{226} $
$ 10 $ $ \mathcal{N}_{(11)} $ $ (1011101011111010111010001000101000) $ $ \textbf{8} $ $ \textbf{233} $ $ 11 $ $ \mathcal{N}_{(12)} $ $ (1101100000000101110010111111001110) $ $ 9 $ $ 213 $
$ 12 $ $ \mathcal{N}_{(13)} $ $ (0111110101110100100110100100000111) $ $ 9 $ $ 222 $ $ 13 $ $ \mathcal{N}_{(14)} $ $ (1100011000000000100101010101100010) $ $ \textbf{9} $ $ \textbf{229} $
$ 14 $ $ \mathcal{N}_{(15)} $ $ (0100111000100000110010100011000100) $ $ \textbf{9} $ $ \textbf{235} $ $ 15 $ $ \mathcal{N}_{(16)} $ $ (0000111011111101001101111010001101) $ $ \textbf{9} $ $ \textbf{236} $
$ 16 $ $ \mathcal{N}_{(17)} $ $ (0110010111000111101001101101101110) $ $ \textbf{9} $ $ \textbf{240} $ $ 17 $ $ \mathcal{N}_{(18)} $ $ (0001101000010111100111111110001001) $ $ \textbf{9} $ $ \textbf{243} $
$ 18 $ $ \mathcal{N}_{(19)} $ $ (1111010011001111000010010001010001) $ $ \textbf{9} $ $ \textbf{247} $ $ 19 $ $ \mathcal{N}_{(20)} $ $ (0001000000100010001011101011110000) $ $ \textbf{8} $ $ \textbf{234} $
$ 20 $ $ \mathcal{N}_{(21)} $ $ (0110110001101011101000111100110001) $ $ \textbf{8} $ $ \textbf{245} $ $ 21 $ $ \mathcal{N}_{(22)} $ $ (1000011100010110100110011011000011) $ $ \textbf{8} $ $ \textbf{250} $
$ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $ $ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $
$ 0 $ $ \mathcal{N}_{(1)} $ $ (1110000001001111010001001000010000) $ $ 3 $ $ 180 $ $ 1 $ $ \mathcal{N}_{(2)} $ $ (0110111111100111000010000110011111) $ $ 4 $ $ 177 $
$ 2 $ $ \mathcal{N}_{(3)} $ $ (1111110110010011100101001000101111) $ $ 5 $ $ 169 $ $ 3 $ $ \mathcal{N}_{(4)} $ $ (0100000000110011110000010000011110) $ $ 6 $ $ 191 $
$ 4 $ $ \mathcal{N}_{(5)} $ $ (0100000000001101110010001110000110) $ $ 6 $ $ 199 $ $ 5 $ $ \mathcal{N}_{(6)} $ $ (0000100000001100010011001110000111) $ $ 7 $ $ 199 $
$ 6 $ $ \mathcal{N}_{(7)} $ $ (1011111101001111000101010111111010) $ $ \textbf{7} $ $ \textbf{209} $ $ 7 $ $ \mathcal{N}_{(8)} $ $ (1110011111110110000101111101111110) $ $ \textbf{7} $ $ \textbf{220} $
$ 8 $ $ \mathcal{N}_{(9)} $ $ (1100101001011011001101000000111100) $ $ 8 $ $ 212 $ $ 9 $ $ \mathcal{N}_{(10)} $ $ (1110110100111111000010011111011000) $ $ \textbf{8} $ $ \textbf{226} $
$ 10 $ $ \mathcal{N}_{(11)} $ $ (1011101011111010111010001000101000) $ $ \textbf{8} $ $ \textbf{233} $ $ 11 $ $ \mathcal{N}_{(12)} $ $ (1101100000000101110010111111001110) $ $ 9 $ $ 213 $
$ 12 $ $ \mathcal{N}_{(13)} $ $ (0111110101110100100110100100000111) $ $ 9 $ $ 222 $ $ 13 $ $ \mathcal{N}_{(14)} $ $ (1100011000000000100101010101100010) $ $ \textbf{9} $ $ \textbf{229} $
$ 14 $ $ \mathcal{N}_{(15)} $ $ (0100111000100000110010100011000100) $ $ \textbf{9} $ $ \textbf{235} $ $ 15 $ $ \mathcal{N}_{(16)} $ $ (0000111011111101001101111010001101) $ $ \textbf{9} $ $ \textbf{236} $
$ 16 $ $ \mathcal{N}_{(17)} $ $ (0110010111000111101001101101101110) $ $ \textbf{9} $ $ \textbf{240} $ $ 17 $ $ \mathcal{N}_{(18)} $ $ (0001101000010111100111111110001001) $ $ \textbf{9} $ $ \textbf{243} $
$ 18 $ $ \mathcal{N}_{(19)} $ $ (1111010011001111000010010001010001) $ $ \textbf{9} $ $ \textbf{247} $ $ 19 $ $ \mathcal{N}_{(20)} $ $ (0001000000100010001011101011110000) $ $ \textbf{8} $ $ \textbf{234} $
$ 20 $ $ \mathcal{N}_{(21)} $ $ (0110110001101011101000111100110001) $ $ \textbf{8} $ $ \textbf{245} $ $ 21 $ $ \mathcal{N}_{(22)} $ $ (1000011100010110100110011011000011) $ $ \textbf{8} $ $ \textbf{250} $
Table 7.  Neighbours of $ \mathcal{N}_{(7)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 7 $ $ 1 $ $ (0001101011101000000010101100100000) $ $ \textbf{7} $ $ \textbf{200} $ $ 7 $ $ 2 $ $ (1011110000101000000000000110110010) $ $ \textbf{7} $ $ \textbf{201} $
$ 7 $ $ 3 $ $ (1010110010100001100100011110001110) $ $ \textbf{7} $ $ \textbf{202} $ $ 7 $ $ 4 $ $ (0001001110011000100100000010000111) $ $ \textbf{7} $ $ \textbf{204} $
$ 7 $ $ 5 $ $ (0110000000101001011011010010111000) $ $ \textbf{7} $ $ \textbf{205} $ $ 7 $ $ 6 $ $ (1101010010010101110001000011001000) $ $ \textbf{7} $ $ \textbf{206} $
$ 7 $ $ 7 $ $ (0000101100001000100101011000010101) $ $ \textbf{7} $ $ \textbf{207} $ $ 7 $ $ 8 $ $ (1101100101111100101110100100000011) $ $ \textbf{7} $ $ \textbf{212} $
$ 7 $ $ 9 $ $ (1111011000001111101001111011111111) $ $ \textbf{7} $ $ \textbf{214} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 7 $ $ 1 $ $ (0001101011101000000010101100100000) $ $ \textbf{7} $ $ \textbf{200} $ $ 7 $ $ 2 $ $ (1011110000101000000000000110110010) $ $ \textbf{7} $ $ \textbf{201} $
$ 7 $ $ 3 $ $ (1010110010100001100100011110001110) $ $ \textbf{7} $ $ \textbf{202} $ $ 7 $ $ 4 $ $ (0001001110011000100100000010000111) $ $ \textbf{7} $ $ \textbf{204} $
$ 7 $ $ 5 $ $ (0110000000101001011011010010111000) $ $ \textbf{7} $ $ \textbf{205} $ $ 7 $ $ 6 $ $ (1101010010010101110001000011001000) $ $ \textbf{7} $ $ \textbf{206} $
$ 7 $ $ 7 $ $ (0000101100001000100101011000010101) $ $ \textbf{7} $ $ \textbf{207} $ $ 7 $ $ 8 $ $ (1101100101111100101110100100000011) $ $ \textbf{7} $ $ \textbf{212} $
$ 7 $ $ 9 $ $ (1111011000001111101001111011111111) $ $ \textbf{7} $ $ \textbf{214} $
Table 8.  Neighbours of $ \mathcal{N}_{(8)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 8 $ $ 10 $ $ (0101101001001001100111000010001010) $ $ \textbf{6} $ $ \textbf{205} $ $ 8 $ $ 11 $ $ (0000111000000101110110010000000101) $ $ \textbf{6} $ $ \textbf{211} $
$ 8 $ $ 12 $ $ (1000110101001001010000000111111011) $ $ \textbf{7} $ $ \textbf{208} $ $ 8 $ $ 13 $ $ (1100001010000110010100101000001100) $ $ \textbf{7} $ $ \textbf{211} $
$ 8 $ $ 14 $ $ (0000011000010001001000011101100110) $ $ \textbf{7} $ $ \textbf{213} $ $ 8 $ $ 15 $ $ (0011000110000110101101001101111011) $ $ \textbf{7} $ $ \textbf{215} $
$ 8 $ $ 16 $ $ (0100001111110010110100000101101010) $ $ \textbf{7} $ $ \textbf{216} $ $ 8 $ $ 17 $ $ (1111101111010101000001000100011110) $ $ \textbf{7} $ $ \textbf{218} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 8 $ $ 10 $ $ (0101101001001001100111000010001010) $ $ \textbf{6} $ $ \textbf{205} $ $ 8 $ $ 11 $ $ (0000111000000101110110010000000101) $ $ \textbf{6} $ $ \textbf{211} $
$ 8 $ $ 12 $ $ (1000110101001001010000000111111011) $ $ \textbf{7} $ $ \textbf{208} $ $ 8 $ $ 13 $ $ (1100001010000110010100101000001100) $ $ \textbf{7} $ $ \textbf{211} $
$ 8 $ $ 14 $ $ (0000011000010001001000011101100110) $ $ \textbf{7} $ $ \textbf{213} $ $ 8 $ $ 15 $ $ (0011000110000110101101001101111011) $ $ \textbf{7} $ $ \textbf{215} $
$ 8 $ $ 16 $ $ (0100001111110010110100000101101010) $ $ \textbf{7} $ $ \textbf{216} $ $ 8 $ $ 17 $ $ (1111101111010101000001000100011110) $ $ \textbf{7} $ $ \textbf{218} $
Table 9.  Neighbours of $ \mathcal{N}_{(10)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 10 $ $ 18 $ $ (1000111101011101000010001111000100) $ $ \textbf{8} $ $ \textbf{222} $ $ 10 $ $ 19 $ $ (1000001100101001110001001010110111) $ $ \textbf{8} $ $ \textbf{223} $
$ 10 $ $ 20 $ $ (0000100110010101011101101001100110) $ $ \textbf{8} $ $ \textbf{227} $ $ 10 $ $ 21 $ $ (1011001101010011010111011000101010) $ $ \textbf{8} $ $ \textbf{229} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 10 $ $ 18 $ $ (1000111101011101000010001111000100) $ $ \textbf{8} $ $ \textbf{222} $ $ 10 $ $ 19 $ $ (1000001100101001110001001010110111) $ $ \textbf{8} $ $ \textbf{223} $
$ 10 $ $ 20 $ $ (0000100110010101011101101001100110) $ $ \textbf{8} $ $ \textbf{227} $ $ 10 $ $ 21 $ $ (1011001101010011010111011000101010) $ $ \textbf{8} $ $ \textbf{229} $
Table 10.  Neighbours of $ \mathcal{N}_{(11)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 11 $ $ 22 $ $ (1010110110000101110101111100110110) $ $ \textbf{7} $ $ \textbf{221} $ $ 11 $ $ 23 $ $ (0000001101000001110010110101100000) $ $ \textbf{7} $ $ \textbf{222} $
$ 11 $ $ 24 $ $ (1101010100100000111010001000010011) $ $ \textbf{8} $ $ \textbf{224} $ $ 11 $ $ 25 $ $ (0000010011001000010100011111011111) $ $ \textbf{8} $ $ \textbf{225} $
$ 11 $ $ 26 $ $ (1110111110110010111011101101101110) $ $ \textbf{8} $ $ \textbf{228} $ $ 11 $ $ 27 $ $ (1001100110100111000010100000100101) $ $ \textbf{8} $ $ \textbf{230} $
$ 11 $ $ 28 $ $ (0000110001111000001001000011101000) $ $ \textbf{8} $ $ \textbf{231} $ $ 11 $ $ 29 $ $ (1001011111010011000001100001010000) $ $ \textbf{8} $ $ \textbf{232} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 11 $ $ 22 $ $ (1010110110000101110101111100110110) $ $ \textbf{7} $ $ \textbf{221} $ $ 11 $ $ 23 $ $ (0000001101000001110010110101100000) $ $ \textbf{7} $ $ \textbf{222} $
$ 11 $ $ 24 $ $ (1101010100100000111010001000010011) $ $ \textbf{8} $ $ \textbf{224} $ $ 11 $ $ 25 $ $ (0000010011001000010100011111011111) $ $ \textbf{8} $ $ \textbf{225} $
$ 11 $ $ 26 $ $ (1110111110110010111011101101101110) $ $ \textbf{8} $ $ \textbf{228} $ $ 11 $ $ 27 $ $ (1001100110100111000010100000100101) $ $ \textbf{8} $ $ \textbf{230} $
$ 11 $ $ 28 $ $ (0000110001111000001001000011101000) $ $ \textbf{8} $ $ \textbf{231} $ $ 11 $ $ 29 $ $ (1001011111010011000001100001010000) $ $ \textbf{8} $ $ \textbf{232} $
Table 11.  Neighbours of $ \mathcal{N}_{(12)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 12 $ $ 30 $ $ (1000100110000001010101010100001001) $ $ \textbf{9} $ $ \textbf{191} $ $ 12 $ $ 31 $ $ (0111010100101000000001100101011010) $ $ \textbf{9} $ $ \textbf{197} $
$ 12 $ $ 32 $ $ (1111100000101101001011110111000010) $ $ \textbf{9} $ $ \textbf{212} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 12 $ $ 30 $ $ (1000100110000001010101010100001001) $ $ \textbf{9} $ $ \textbf{191} $ $ 12 $ $ 31 $ $ (0111010100101000000001100101011010) $ $ \textbf{9} $ $ \textbf{197} $
$ 12 $ $ 32 $ $ (1111100000101101001011110111000010) $ $ \textbf{9} $ $ \textbf{212} $
Table 12.  Neighbour of $ \mathcal{N}_{(14)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 14 $ $ 33 $ $ (1011110001101000100111010000010000) $ $ \textbf{9} $ $ \textbf{227} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 14 $ $ 33 $ $ (1011110001101000100111010000010000) $ $ \textbf{9} $ $ \textbf{227} $
Table 13.  Neighbours of $ \mathcal{N}_{(15)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 15 $ $ 34 $ $ (1011000011111110011101011000000101) $ $ \textbf{9} $ $ \textbf{231} $ $ 15 $ $ 35 $ $ (1111110111110000010110000100010011) $ $ \textbf{9} $ $ \textbf{232} $
$ 15 $ $ 36 $ $ (0011000011010010100011010000111001) $ $ \textbf{9} $ $ \textbf{233} $ $ 15 $ $ 37 $ $ (0000000000111100000000101100111101) $ $ \textbf{9} $ $ \textbf{234} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 15 $ $ 34 $ $ (1011000011111110011101011000000101) $ $ \textbf{9} $ $ \textbf{231} $ $ 15 $ $ 35 $ $ (1111110111110000010110000100010011) $ $ \textbf{9} $ $ \textbf{232} $
$ 15 $ $ 36 $ $ (0011000011010010100011010000111001) $ $ \textbf{9} $ $ \textbf{233} $ $ 15 $ $ 37 $ $ (0000000000111100000000101100111101) $ $ \textbf{9} $ $ \textbf{234} $
Table 14.  Neighbours of $ \mathcal{N}_{(17)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 17 $ $ 38 $ $ (0110000100000010110010110000110100) $ $ \textbf{9} $ $ \textbf{237} $ $ 17 $ $ 39 $ $ (0011111001100000111100111101010010) $ $ \textbf{9} $ $ \textbf{238} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 17 $ $ 38 $ $ (0110000100000010110010110000110100) $ $ \textbf{9} $ $ \textbf{237} $ $ 17 $ $ 39 $ $ (0011111001100000111100111101010010) $ $ \textbf{9} $ $ \textbf{238} $
Table 15.  Neighbours of $ \mathcal{N}_{(18)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 18 $ $ 40 $ $ (0110010110000001001110111010011100) $ $ \textbf{9} $ $ \textbf{239} $ $ 18 $ $ 41 $ $ (1111000010111111010100101000111101) $ $ \textbf{9} $ $ \textbf{241} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 18 $ $ 40 $ $ (0110010110000001001110111010011100) $ $ \textbf{9} $ $ \textbf{239} $ $ 18 $ $ 41 $ $ (1111000010111111010100101000111101) $ $ \textbf{9} $ $ \textbf{241} $
Table 16.  Neighbours of $ \mathcal{N}_{(19)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 19 $ $ 42 $ $ (1011110110001100110101001011001010) $ $ \textbf{9} $ $ \textbf{242} $ $ 19 $ $ 43 $ $ (0101010111011010111100000111011110) $ $ \textbf{9} $ $ \textbf{244} $
$ 19 $ $ 44 $ $ (1010110011000110001101001010010000) $ $ \textbf{9} $ $ \textbf{246} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 19 $ $ 42 $ $ (1011110110001100110101001011001010) $ $ \textbf{9} $ $ \textbf{242} $ $ 19 $ $ 43 $ $ (0101010111011010111100000111011110) $ $ \textbf{9} $ $ \textbf{244} $
$ 19 $ $ 44 $ $ (1010110011000110001101001010010000) $ $ \textbf{9} $ $ \textbf{246} $
Table 17.  Neighbours of $ \mathcal{N}_{(20)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 20 $ $ 45 $ $ (1111111110101111010101000110001101) $ $ \textbf{8} $ $ \textbf{236} $ $ 20 $ $ 46 $ $ (1010000010110000100011110101111001) $ $ \textbf{8} $ $ \textbf{239} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 20 $ $ 45 $ $ (1111111110101111010101000110001101) $ $ \textbf{8} $ $ \textbf{236} $ $ 20 $ $ 46 $ $ (1010000010110000100011110101111001) $ $ \textbf{8} $ $ \textbf{239} $
Table 18.  Neighbours of $ \mathcal{N}_{(21)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 21 $ $ 47 $ $ (0100000110001011000001000101101010) $ $ \textbf{6} $ $ \textbf{208} $ $ 21 $ $ 48 $ $ (1101111000000001010010000110110001) $ $ \textbf{6} $ $ \textbf{209} $
$ 21 $ $ 49 $ $ (1011101011101010010101111101000101) $ $ \textbf{6} $ $ \textbf{212} $ $ 21 $ $ 50 $ $ (1111110111000100010010111011100000) $ $ \textbf{6} $ $ \textbf{214} $
$ 21 $ $ 51 $ $ (1011111101010010111011101111111100) $ $ \textbf{6} $ $ \textbf{215} $ $ 21 $ $ 52 $ $ (0000000001100001001001100111011100) $ $ \textbf{6} $ $ \textbf{218} $
$ 21 $ $ 53 $ $ (1111011001110010100001101011011011) $ $ \textbf{6} $ $ \textbf{220} $ $ 21 $ $ 54 $ $ (0100000001010101001001101001000011) $ $ \textbf{7} $ $ \textbf{219} $
$ 21 $ $ 55 $ $ (1100000000000001110100001001100111) $ $ \textbf{7} $ $ \textbf{223} $ $ 21 $ $ 56 $ $ (0000001101000100110101111100001111) $ $ \textbf{7} $ $ \textbf{225} $
$ 21 $ $ 57 $ $ (1111011001111010111110100111110110) $ $ \textbf{7} $ $ \textbf{226} $ $ 21 $ $ 58 $ $ (0010011000011000001000111001000101) $ $ \textbf{7} $ $ \textbf{227} $
$ 21 $ $ 59 $ $ (1001010101101111101110000000000011) $ $ \textbf{7} $ $ \textbf{230} $ $ 21 $ $ 60 $ $ (1111110101100000100011001110100110) $ $ \textbf{8} $ $ \textbf{235} $
$ 21 $ $ 61 $ $ (0110000110110100100100101111100100) $ $ \textbf{8} $ $ \textbf{238} $ $ 21 $ $ 62 $ $ (1010010010111110111001111011100010) $ $ \textbf{8} $ $ \textbf{240} $
$ 21 $ $ 63 $ $ (1101011100111011010011111101111110) $ $ \textbf{8} $ $ \textbf{241} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 21 $ $ 47 $ $ (0100000110001011000001000101101010) $ $ \textbf{6} $ $ \textbf{208} $ $ 21 $ $ 48 $ $ (1101111000000001010010000110110001) $ $ \textbf{6} $ $ \textbf{209} $
$ 21 $ $ 49 $ $ (1011101011101010010101111101000101) $ $ \textbf{6} $ $ \textbf{212} $ $ 21 $ $ 50 $ $ (1111110111000100010010111011100000) $ $ \textbf{6} $ $ \textbf{214} $
$ 21 $ $ 51 $ $ (1011111101010010111011101111111100) $ $ \textbf{6} $ $ \textbf{215} $ $ 21 $ $ 52 $ $ (0000000001100001001001100111011100) $ $ \textbf{6} $ $ \textbf{218} $
$ 21 $ $ 53 $ $ (1111011001110010100001101011011011) $ $ \textbf{6} $ $ \textbf{220} $ $ 21 $ $ 54 $ $ (0100000001010101001001101001000011) $ $ \textbf{7} $ $ \textbf{219} $
$ 21 $ $ 55 $ $ (1100000000000001110100001001100111) $ $ \textbf{7} $ $ \textbf{223} $ $ 21 $ $ 56 $ $ (0000001101000100110101111100001111) $ $ \textbf{7} $ $ \textbf{225} $
$ 21 $ $ 57 $ $ (1111011001111010111110100111110110) $ $ \textbf{7} $ $ \textbf{226} $ $ 21 $ $ 58 $ $ (0010011000011000001000111001000101) $ $ \textbf{7} $ $ \textbf{227} $
$ 21 $ $ 59 $ $ (1001010101101111101110000000000011) $ $ \textbf{7} $ $ \textbf{230} $ $ 21 $ $ 60 $ $ (1111110101100000100011001110100110) $ $ \textbf{8} $ $ \textbf{235} $
$ 21 $ $ 61 $ $ (0110000110110100100100101111100100) $ $ \textbf{8} $ $ \textbf{238} $ $ 21 $ $ 62 $ $ (1010010010111110111001111011100010) $ $ \textbf{8} $ $ \textbf{240} $
$ 21 $ $ 63 $ $ (1101011100111011010011111101111110) $ $ \textbf{8} $ $ \textbf{241} $
Table 19.  Neighbours of $ \mathcal{N}_{(22)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 22 $ $ 63 $ $ (0011111100111010011001010011100100) $ $ \textbf{5} $ $ \textbf{207} $ $ 22 $ $ 64 $ $ (1011111100101111100110111111111101) $ $ \textbf{6} $ $ \textbf{213} $
$ 22 $ $ 65 $ $ (1001011101001100101011001000110100) $ $ \textbf{6} $ $ \textbf{217} $ $ 22 $ $ 66 $ $ (0100111101000110110111101101111110) $ $ \textbf{6} $ $ \textbf{219} $
$ 22 $ $ 68 $ $ (1000010000111101010101110010010011) $ $ \textbf{7} $ $ \textbf{229} $ $ 22 $ $ 69 $ $ (0100000001011101000011001111110011) $ $ \textbf{8} $ $ \textbf{237} $
$ 22 $ $ 70 $ $ (1111111101001111101100000010100000) $ $ \textbf{8} $ $ \textbf{242} $ $ 22 $ $ 71 $ $ (0010000100001001100001001110111000) $ $ \textbf{8} $ $ \textbf{243} $
$ 22 $ $ 72 $ $ (1110110000001011011001101011011010) $ $ \textbf{8} $ $ \textbf{247} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 22 $ $ 63 $ $ (0011111100111010011001010011100100) $ $ \textbf{5} $ $ \textbf{207} $ $ 22 $ $ 64 $ $ (1011111100101111100110111111111101) $ $ \textbf{6} $ $ \textbf{213} $
$ 22 $ $ 65 $ $ (1001011101001100101011001000110100) $ $ \textbf{6} $ $ \textbf{217} $ $ 22 $ $ 66 $ $ (0100111101000110110111101101111110) $ $ \textbf{6} $ $ \textbf{219} $
$ 22 $ $ 68 $ $ (1000010000111101010101110010010011) $ $ \textbf{7} $ $ \textbf{229} $ $ 22 $ $ 69 $ $ (0100000001011101000011001111110011) $ $ \textbf{8} $ $ \textbf{237} $
$ 22 $ $ 70 $ $ (1111111101001111101100000010100000) $ $ \textbf{8} $ $ \textbf{242} $ $ 22 $ $ 71 $ $ (0010000100001001100001001110111000) $ $ \textbf{8} $ $ \textbf{243} $
$ 22 $ $ 72 $ $ (1110110000001011011001101011011010) $ $ \textbf{8} $ $ \textbf{247} $
[1]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[4]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[5]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[6]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[7]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[8]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[9]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[10]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[11]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[12]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[17]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[20]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (48)
  • HTML views (196)
  • Cited by (0)

[Back to Top]