doi: 10.3934/amc.2020111

New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings

1. 

Department of Algebra, Uzhgorod National University, Uzhgorod, Ukraine

2. 

Department of Mathematical and Physical Sciences, University of Chester, UK

3. 

Harmony School of Technology, Houston, TX 77038, USA

Received  March 2020 Published  September 2020

Many generator matrices for constructing extremal binary self-dual codes of different lengths have the form $ G = (I_n \ | \ A), $ where $ I_n $ is the $ n \times n $ identity matrix and $ A $ is the $ n \times n $ matrix fully determined by the first row. In this work, we define a generator matrix in which $ A $ is a block matrix, where the blocks come from group rings and also, $ A $ is not fully determined by the elements appearing in the first row. By applying our construction over $ \mathbb{F}_2+u\mathbb{F}_2 $ and by employing the extension method for codes, we were able to construct new extremal binary self-dual codes of length 68. Additionally, by employing a generalised neighbour method to the codes obtained, we were able to construct many new binary self-dual $ [68, 34, 12] $-codes with the rare parameters $ \gamma = 7, 8 $ and $ 9 $ in $ W_{68, 2}. $ In particular, we find 92 new binary self-dual $ [68, 34, 12] $-codes.

Citation: Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, doi: 10.3934/amc.2020111
References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[4]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[5]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., (2019). doi: 10.1007/s12095-019-00380-8.  Google Scholar

[6]

S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Comm., (2019). doi: 10.1016/j.ffa.2020.101692.  Google Scholar

[7]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des., Codes and Cryptog., Designs, 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[10]

S. T. DoughertyJ. L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[11]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Comm.. doi: 10.3934/amc.2020077.  Google Scholar

[12]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., (2020). doi: 10.1016/j.ffa.2020.101727.  Google Scholar

[13]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[14]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.  Google Scholar

[15]

T. Hurley, "Group Rings and Rings of Matrices", J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[16]

S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.  Google Scholar

[17]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.  Google Scholar

[18]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.  Google Scholar

[19]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[20]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[21]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[22]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). doi: 10.1007/s00200-019-00403-0.  Google Scholar

show all references

References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[4]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[5]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., (2019). doi: 10.1007/s12095-019-00380-8.  Google Scholar

[6]

S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Comm., (2019). doi: 10.1016/j.ffa.2020.101692.  Google Scholar

[7]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des., Codes and Cryptog., Designs, 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[10]

S. T. DoughertyJ. L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[11]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Comm.. doi: 10.3934/amc.2020077.  Google Scholar

[12]

J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., (2020). doi: 10.1016/j.ffa.2020.101727.  Google Scholar

[13]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[14]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.  Google Scholar

[15]

T. Hurley, "Group Rings and Rings of Matrices", J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[16]

S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.  Google Scholar

[17]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.  Google Scholar

[18]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.  Google Scholar

[19]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[20]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[21]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[22]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). doi: 10.1007/s00200-019-00403-0.  Google Scholar

Table 1.  Codes of length 32 via Theorem 3.1 with the cyclic group $ C_8 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_1 $ $ (0, 0, 0, 0, 0, 1, 1, 1) $ $ (0, 0, 0, 0, 0, 1, 0, 1) $ $ (0, 1, 0, 1, 0, 0, 1, 0) $ $ 2^93^25 $ $ [32, 16, 6]_I $
$ C_2 $ $ (0, 0, 0, 0, 1, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 1, 1) $ $ (0, 0, 0, 1, 1, 1, 1, 0) $ $ 2^5 $ $ [32, 16, 6]_I $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_1 $ $ (0, 0, 0, 0, 0, 1, 1, 1) $ $ (0, 0, 0, 0, 0, 1, 0, 1) $ $ (0, 1, 0, 1, 0, 0, 1, 0) $ $ 2^93^25 $ $ [32, 16, 6]_I $
$ C_2 $ $ (0, 0, 0, 0, 1, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 1, 1) $ $ (0, 0, 0, 1, 1, 1, 1, 0) $ $ 2^5 $ $ [32, 16, 6]_I $
Table 2.  Codes of length 64 from $ R_1 $ lifts of $ C_1 $ and $ C_2 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_1 $ $ C_2 $ $ (u, 0, 0, u, 1, 1, u+1, 1) $ $ (0, 0, 1, u+1, 0, u+1, 1, 1) $ $ (0, u, u, u+1, u+1, u+1, 1, 0) $ $ 2^5 $ $ \beta=0 $
$ I_2 $ $ C_1 $ $ (0, u, 0, 0, 0, 1, 1, u+1) $ $ (0, u, 0, u, u, 1, 0, 1) $ $ (0, 1, 0, u+1, 0, 0, 1, u) $ $ 2^7 $ $ \beta=80 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_1 $ $ C_2 $ $ (u, 0, 0, u, 1, 1, u+1, 1) $ $ (0, 0, 1, u+1, 0, u+1, 1, 1) $ $ (0, u, u, u+1, u+1, u+1, 1, 0) $ $ 2^5 $ $ \beta=0 $
$ I_2 $ $ C_1 $ $ (0, u, 0, 0, 0, 1, 1, u+1) $ $ (0, u, 0, u, u, 1, 0, 1) $ $ (0, 1, 0, u+1, 0, 0, 1, u) $ $ 2^7 $ $ \beta=80 $
Table 3.  Codes of length 32 via Theorem 3.1 with the dihedral group $ D_8 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_3 $ $ (0, 0, 0, 1, 0, 0, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 0, 1) $ $ (1, 1, 0, 1, 0, 1, 1, 0) $ $ 2^33 $ $ [32, 16, 6]_I $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ Type
$ C_3 $ $ (0, 0, 0, 1, 0, 0, 1, 1) $ $ (0, 0, 1, 1, 0, 1, 0, 1) $ $ (1, 1, 0, 1, 0, 1, 1, 0) $ $ 2^33 $ $ [32, 16, 6]_I $
Table 4.  Codes of length 64 from $ R_1 $ lifts of $ C_3 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_3 $ $ C_3 $ $ (0, u, u, 1, 0, 0, 1, 1) $ $ (0, 0, 1, u+1, u, 1, 0, 1) $ $ (u+1, u+1, 0, u+1, 0, 1, u+1, 0) $ $ 2^43 $ $ \beta=64 $
Code $ v_1 $ $ v_2 $ $ v_3 $ $ |Aut(C)| $ $ W_{64, 2} $
$ I_3 $ $ C_3 $ $ (0, u, u, 1, 0, 0, 1, 1) $ $ (0, 0, 1, u+1, u, 1, 0, 1) $ $ (u+1, u+1, 0, u+1, 0, 1, u+1, 0) $ $ 2^43 $ $ \beta=64 $
Table 5.  New codes of length 68 from Theorem 2.4
$ C_{68, i} $ Code $ (x_{17}, x_{18}, \dots , x_{32}) $ $ c $ $ \gamma $ $ \beta \ in\ W_{64, 2} $
$ C_{68, 1} $ $ I_{3} $ $ (u, u, 0, 1, 3, u, u, u, u, 3, u, 1, 0, 0, u, 3, u, 1, 0, 1, 1, 3, 3, 3, u, 0, 3, u, u, 1, 0, 0) $ $ 1 $ $ \boldsymbol{0} $ $ \boldsymbol{181} $
$ C_{68, 2} $ $ I_{3} $ $ (0, 3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 1, u, 0, u, 0, u, 0, u, 3, 0, 0, 1, 1, 1, 1, u, u, 1, 3, u, u) $ $ 3 $ $ \boldsymbol{1} $ $ \boldsymbol{185} $
$ C_{68, 3} $ $ I_{1} $ $ (0, 1, 1, u, u, 3, u, 1, 3, 3, 1, 0, 0, 3, 3, u, 1, 3, 3, u, u, 3, 0, u, 3, u, 3, u, 1, 3, 0, 0) $ $ 3 $ $ \boldsymbol{2} $ $ \boldsymbol{54} $
$ C_{68, 4} $ $ I_{2} $ $ (u, 3, 1, 3, 0, 0, 3, u, 0, 3, 0, u, u, u, 0, u, 3, 1, 0, 3, 0, 3, u, 1, 1, 1, 1, u, 0, 3, 0, 1) $ $ 1 $ $ \boldsymbol{2} $ $ \boldsymbol{202} $
$ C_{68, 5} $ $ I_{3} $ $ (u, u, u, 3, 0, 0, 1, u, 1, u, 1, 3, u, 0, 0, 3, 0, 1, u, 3, 0, 1, 0, 3, 1, 1, 0, 3, u, 3, 0, 1) $ $ 1 $ $ \boldsymbol{3} $ $ \boldsymbol{179} $
$ C_{68, 6} $ $ I_{3} $ $ (u, 0, 0, 1, 1, 0, 1, 0, 3, 3, u, 0, 1, 0, 3, 3, 1, 0, 3, 0, 3, 3, 1, u, 1, u, 1, u, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{189} $
$ C_{68, 7} $ $ I_{3} $ $ (0, 3, 0, 1, u, 3, u, 3, 0, 1, 0, 3, 0, 3, 0, 0, 1, u, u, 1, 0, u, 1, 0, u, 0, u, 1, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{198} $
$ C_{68, i} $ Code $ (x_{17}, x_{18}, \dots , x_{32}) $ $ c $ $ \gamma $ $ \beta \ in\ W_{64, 2} $
$ C_{68, 1} $ $ I_{3} $ $ (u, u, 0, 1, 3, u, u, u, u, 3, u, 1, 0, 0, u, 3, u, 1, 0, 1, 1, 3, 3, 3, u, 0, 3, u, u, 1, 0, 0) $ $ 1 $ $ \boldsymbol{0} $ $ \boldsymbol{181} $
$ C_{68, 2} $ $ I_{3} $ $ (0, 3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 1, u, 0, u, 0, u, 0, u, 3, 0, 0, 1, 1, 1, 1, u, u, 1, 3, u, u) $ $ 3 $ $ \boldsymbol{1} $ $ \boldsymbol{185} $
$ C_{68, 3} $ $ I_{1} $ $ (0, 1, 1, u, u, 3, u, 1, 3, 3, 1, 0, 0, 3, 3, u, 1, 3, 3, u, u, 3, 0, u, 3, u, 3, u, 1, 3, 0, 0) $ $ 3 $ $ \boldsymbol{2} $ $ \boldsymbol{54} $
$ C_{68, 4} $ $ I_{2} $ $ (u, 3, 1, 3, 0, 0, 3, u, 0, 3, 0, u, u, u, 0, u, 3, 1, 0, 3, 0, 3, u, 1, 1, 1, 1, u, 0, 3, 0, 1) $ $ 1 $ $ \boldsymbol{2} $ $ \boldsymbol{202} $
$ C_{68, 5} $ $ I_{3} $ $ (u, u, u, 3, 0, 0, 1, u, 1, u, 1, 3, u, 0, 0, 3, 0, 1, u, 3, 0, 1, 0, 3, 1, 1, 0, 3, u, 3, 0, 1) $ $ 1 $ $ \boldsymbol{3} $ $ \boldsymbol{179} $
$ C_{68, 6} $ $ I_{3} $ $ (u, 0, 0, 1, 1, 0, 1, 0, 3, 3, u, 0, 1, 0, 3, 3, 1, 0, 3, 0, 3, 3, 1, u, 1, u, 1, u, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{189} $
$ C_{68, 7} $ $ I_{3} $ $ (0, 3, 0, 1, u, 3, u, 3, 0, 1, 0, 3, 0, 3, 0, 0, 1, u, u, 1, 0, u, 1, 0, u, 0, u, 1, 3, 0, 1, u) $ $ 3 $ $ \boldsymbol{3} $ $ \boldsymbol{198} $
Table 6.  $ i^{th} $ neighbour of $ \mathcal{N}_{(0)} $
$ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $ $ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $
$ 0 $ $ \mathcal{N}_{(1)} $ $ (1110000001001111010001001000010000) $ $ 3 $ $ 180 $ $ 1 $ $ \mathcal{N}_{(2)} $ $ (0110111111100111000010000110011111) $ $ 4 $ $ 177 $
$ 2 $ $ \mathcal{N}_{(3)} $ $ (1111110110010011100101001000101111) $ $ 5 $ $ 169 $ $ 3 $ $ \mathcal{N}_{(4)} $ $ (0100000000110011110000010000011110) $ $ 6 $ $ 191 $
$ 4 $ $ \mathcal{N}_{(5)} $ $ (0100000000001101110010001110000110) $ $ 6 $ $ 199 $ $ 5 $ $ \mathcal{N}_{(6)} $ $ (0000100000001100010011001110000111) $ $ 7 $ $ 199 $
$ 6 $ $ \mathcal{N}_{(7)} $ $ (1011111101001111000101010111111010) $ $ \textbf{7} $ $ \textbf{209} $ $ 7 $ $ \mathcal{N}_{(8)} $ $ (1110011111110110000101111101111110) $ $ \textbf{7} $ $ \textbf{220} $
$ 8 $ $ \mathcal{N}_{(9)} $ $ (1100101001011011001101000000111100) $ $ 8 $ $ 212 $ $ 9 $ $ \mathcal{N}_{(10)} $ $ (1110110100111111000010011111011000) $ $ \textbf{8} $ $ \textbf{226} $
$ 10 $ $ \mathcal{N}_{(11)} $ $ (1011101011111010111010001000101000) $ $ \textbf{8} $ $ \textbf{233} $ $ 11 $ $ \mathcal{N}_{(12)} $ $ (1101100000000101110010111111001110) $ $ 9 $ $ 213 $
$ 12 $ $ \mathcal{N}_{(13)} $ $ (0111110101110100100110100100000111) $ $ 9 $ $ 222 $ $ 13 $ $ \mathcal{N}_{(14)} $ $ (1100011000000000100101010101100010) $ $ \textbf{9} $ $ \textbf{229} $
$ 14 $ $ \mathcal{N}_{(15)} $ $ (0100111000100000110010100011000100) $ $ \textbf{9} $ $ \textbf{235} $ $ 15 $ $ \mathcal{N}_{(16)} $ $ (0000111011111101001101111010001101) $ $ \textbf{9} $ $ \textbf{236} $
$ 16 $ $ \mathcal{N}_{(17)} $ $ (0110010111000111101001101101101110) $ $ \textbf{9} $ $ \textbf{240} $ $ 17 $ $ \mathcal{N}_{(18)} $ $ (0001101000010111100111111110001001) $ $ \textbf{9} $ $ \textbf{243} $
$ 18 $ $ \mathcal{N}_{(19)} $ $ (1111010011001111000010010001010001) $ $ \textbf{9} $ $ \textbf{247} $ $ 19 $ $ \mathcal{N}_{(20)} $ $ (0001000000100010001011101011110000) $ $ \textbf{8} $ $ \textbf{234} $
$ 20 $ $ \mathcal{N}_{(21)} $ $ (0110110001101011101000111100110001) $ $ \textbf{8} $ $ \textbf{245} $ $ 21 $ $ \mathcal{N}_{(22)} $ $ (1000011100010110100110011011000011) $ $ \textbf{8} $ $ \textbf{250} $
$ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $ $ i $ $ \mathcal{N}_{(i+1)} $ $ x_i $ $ \gamma $ $ \beta $
$ 0 $ $ \mathcal{N}_{(1)} $ $ (1110000001001111010001001000010000) $ $ 3 $ $ 180 $ $ 1 $ $ \mathcal{N}_{(2)} $ $ (0110111111100111000010000110011111) $ $ 4 $ $ 177 $
$ 2 $ $ \mathcal{N}_{(3)} $ $ (1111110110010011100101001000101111) $ $ 5 $ $ 169 $ $ 3 $ $ \mathcal{N}_{(4)} $ $ (0100000000110011110000010000011110) $ $ 6 $ $ 191 $
$ 4 $ $ \mathcal{N}_{(5)} $ $ (0100000000001101110010001110000110) $ $ 6 $ $ 199 $ $ 5 $ $ \mathcal{N}_{(6)} $ $ (0000100000001100010011001110000111) $ $ 7 $ $ 199 $
$ 6 $ $ \mathcal{N}_{(7)} $ $ (1011111101001111000101010111111010) $ $ \textbf{7} $ $ \textbf{209} $ $ 7 $ $ \mathcal{N}_{(8)} $ $ (1110011111110110000101111101111110) $ $ \textbf{7} $ $ \textbf{220} $
$ 8 $ $ \mathcal{N}_{(9)} $ $ (1100101001011011001101000000111100) $ $ 8 $ $ 212 $ $ 9 $ $ \mathcal{N}_{(10)} $ $ (1110110100111111000010011111011000) $ $ \textbf{8} $ $ \textbf{226} $
$ 10 $ $ \mathcal{N}_{(11)} $ $ (1011101011111010111010001000101000) $ $ \textbf{8} $ $ \textbf{233} $ $ 11 $ $ \mathcal{N}_{(12)} $ $ (1101100000000101110010111111001110) $ $ 9 $ $ 213 $
$ 12 $ $ \mathcal{N}_{(13)} $ $ (0111110101110100100110100100000111) $ $ 9 $ $ 222 $ $ 13 $ $ \mathcal{N}_{(14)} $ $ (1100011000000000100101010101100010) $ $ \textbf{9} $ $ \textbf{229} $
$ 14 $ $ \mathcal{N}_{(15)} $ $ (0100111000100000110010100011000100) $ $ \textbf{9} $ $ \textbf{235} $ $ 15 $ $ \mathcal{N}_{(16)} $ $ (0000111011111101001101111010001101) $ $ \textbf{9} $ $ \textbf{236} $
$ 16 $ $ \mathcal{N}_{(17)} $ $ (0110010111000111101001101101101110) $ $ \textbf{9} $ $ \textbf{240} $ $ 17 $ $ \mathcal{N}_{(18)} $ $ (0001101000010111100111111110001001) $ $ \textbf{9} $ $ \textbf{243} $
$ 18 $ $ \mathcal{N}_{(19)} $ $ (1111010011001111000010010001010001) $ $ \textbf{9} $ $ \textbf{247} $ $ 19 $ $ \mathcal{N}_{(20)} $ $ (0001000000100010001011101011110000) $ $ \textbf{8} $ $ \textbf{234} $
$ 20 $ $ \mathcal{N}_{(21)} $ $ (0110110001101011101000111100110001) $ $ \textbf{8} $ $ \textbf{245} $ $ 21 $ $ \mathcal{N}_{(22)} $ $ (1000011100010110100110011011000011) $ $ \textbf{8} $ $ \textbf{250} $
Table 7.  Neighbours of $ \mathcal{N}_{(7)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 7 $ $ 1 $ $ (0001101011101000000010101100100000) $ $ \textbf{7} $ $ \textbf{200} $ $ 7 $ $ 2 $ $ (1011110000101000000000000110110010) $ $ \textbf{7} $ $ \textbf{201} $
$ 7 $ $ 3 $ $ (1010110010100001100100011110001110) $ $ \textbf{7} $ $ \textbf{202} $ $ 7 $ $ 4 $ $ (0001001110011000100100000010000111) $ $ \textbf{7} $ $ \textbf{204} $
$ 7 $ $ 5 $ $ (0110000000101001011011010010111000) $ $ \textbf{7} $ $ \textbf{205} $ $ 7 $ $ 6 $ $ (1101010010010101110001000011001000) $ $ \textbf{7} $ $ \textbf{206} $
$ 7 $ $ 7 $ $ (0000101100001000100101011000010101) $ $ \textbf{7} $ $ \textbf{207} $ $ 7 $ $ 8 $ $ (1101100101111100101110100100000011) $ $ \textbf{7} $ $ \textbf{212} $
$ 7 $ $ 9 $ $ (1111011000001111101001111011111111) $ $ \textbf{7} $ $ \textbf{214} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 7 $ $ 1 $ $ (0001101011101000000010101100100000) $ $ \textbf{7} $ $ \textbf{200} $ $ 7 $ $ 2 $ $ (1011110000101000000000000110110010) $ $ \textbf{7} $ $ \textbf{201} $
$ 7 $ $ 3 $ $ (1010110010100001100100011110001110) $ $ \textbf{7} $ $ \textbf{202} $ $ 7 $ $ 4 $ $ (0001001110011000100100000010000111) $ $ \textbf{7} $ $ \textbf{204} $
$ 7 $ $ 5 $ $ (0110000000101001011011010010111000) $ $ \textbf{7} $ $ \textbf{205} $ $ 7 $ $ 6 $ $ (1101010010010101110001000011001000) $ $ \textbf{7} $ $ \textbf{206} $
$ 7 $ $ 7 $ $ (0000101100001000100101011000010101) $ $ \textbf{7} $ $ \textbf{207} $ $ 7 $ $ 8 $ $ (1101100101111100101110100100000011) $ $ \textbf{7} $ $ \textbf{212} $
$ 7 $ $ 9 $ $ (1111011000001111101001111011111111) $ $ \textbf{7} $ $ \textbf{214} $
Table 8.  Neighbours of $ \mathcal{N}_{(8)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 8 $ $ 10 $ $ (0101101001001001100111000010001010) $ $ \textbf{6} $ $ \textbf{205} $ $ 8 $ $ 11 $ $ (0000111000000101110110010000000101) $ $ \textbf{6} $ $ \textbf{211} $
$ 8 $ $ 12 $ $ (1000110101001001010000000111111011) $ $ \textbf{7} $ $ \textbf{208} $ $ 8 $ $ 13 $ $ (1100001010000110010100101000001100) $ $ \textbf{7} $ $ \textbf{211} $
$ 8 $ $ 14 $ $ (0000011000010001001000011101100110) $ $ \textbf{7} $ $ \textbf{213} $ $ 8 $ $ 15 $ $ (0011000110000110101101001101111011) $ $ \textbf{7} $ $ \textbf{215} $
$ 8 $ $ 16 $ $ (0100001111110010110100000101101010) $ $ \textbf{7} $ $ \textbf{216} $ $ 8 $ $ 17 $ $ (1111101111010101000001000100011110) $ $ \textbf{7} $ $ \textbf{218} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 8 $ $ 10 $ $ (0101101001001001100111000010001010) $ $ \textbf{6} $ $ \textbf{205} $ $ 8 $ $ 11 $ $ (0000111000000101110110010000000101) $ $ \textbf{6} $ $ \textbf{211} $
$ 8 $ $ 12 $ $ (1000110101001001010000000111111011) $ $ \textbf{7} $ $ \textbf{208} $ $ 8 $ $ 13 $ $ (1100001010000110010100101000001100) $ $ \textbf{7} $ $ \textbf{211} $
$ 8 $ $ 14 $ $ (0000011000010001001000011101100110) $ $ \textbf{7} $ $ \textbf{213} $ $ 8 $ $ 15 $ $ (0011000110000110101101001101111011) $ $ \textbf{7} $ $ \textbf{215} $
$ 8 $ $ 16 $ $ (0100001111110010110100000101101010) $ $ \textbf{7} $ $ \textbf{216} $ $ 8 $ $ 17 $ $ (1111101111010101000001000100011110) $ $ \textbf{7} $ $ \textbf{218} $
Table 9.  Neighbours of $ \mathcal{N}_{(10)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 10 $ $ 18 $ $ (1000111101011101000010001111000100) $ $ \textbf{8} $ $ \textbf{222} $ $ 10 $ $ 19 $ $ (1000001100101001110001001010110111) $ $ \textbf{8} $ $ \textbf{223} $
$ 10 $ $ 20 $ $ (0000100110010101011101101001100110) $ $ \textbf{8} $ $ \textbf{227} $ $ 10 $ $ 21 $ $ (1011001101010011010111011000101010) $ $ \textbf{8} $ $ \textbf{229} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 10 $ $ 18 $ $ (1000111101011101000010001111000100) $ $ \textbf{8} $ $ \textbf{222} $ $ 10 $ $ 19 $ $ (1000001100101001110001001010110111) $ $ \textbf{8} $ $ \textbf{223} $
$ 10 $ $ 20 $ $ (0000100110010101011101101001100110) $ $ \textbf{8} $ $ \textbf{227} $ $ 10 $ $ 21 $ $ (1011001101010011010111011000101010) $ $ \textbf{8} $ $ \textbf{229} $
Table 10.  Neighbours of $ \mathcal{N}_{(11)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 11 $ $ 22 $ $ (1010110110000101110101111100110110) $ $ \textbf{7} $ $ \textbf{221} $ $ 11 $ $ 23 $ $ (0000001101000001110010110101100000) $ $ \textbf{7} $ $ \textbf{222} $
$ 11 $ $ 24 $ $ (1101010100100000111010001000010011) $ $ \textbf{8} $ $ \textbf{224} $ $ 11 $ $ 25 $ $ (0000010011001000010100011111011111) $ $ \textbf{8} $ $ \textbf{225} $
$ 11 $ $ 26 $ $ (1110111110110010111011101101101110) $ $ \textbf{8} $ $ \textbf{228} $ $ 11 $ $ 27 $ $ (1001100110100111000010100000100101) $ $ \textbf{8} $ $ \textbf{230} $
$ 11 $ $ 28 $ $ (0000110001111000001001000011101000) $ $ \textbf{8} $ $ \textbf{231} $ $ 11 $ $ 29 $ $ (1001011111010011000001100001010000) $ $ \textbf{8} $ $ \textbf{232} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 11 $ $ 22 $ $ (1010110110000101110101111100110110) $ $ \textbf{7} $ $ \textbf{221} $ $ 11 $ $ 23 $ $ (0000001101000001110010110101100000) $ $ \textbf{7} $ $ \textbf{222} $
$ 11 $ $ 24 $ $ (1101010100100000111010001000010011) $ $ \textbf{8} $ $ \textbf{224} $ $ 11 $ $ 25 $ $ (0000010011001000010100011111011111) $ $ \textbf{8} $ $ \textbf{225} $
$ 11 $ $ 26 $ $ (1110111110110010111011101101101110) $ $ \textbf{8} $ $ \textbf{228} $ $ 11 $ $ 27 $ $ (1001100110100111000010100000100101) $ $ \textbf{8} $ $ \textbf{230} $
$ 11 $ $ 28 $ $ (0000110001111000001001000011101000) $ $ \textbf{8} $ $ \textbf{231} $ $ 11 $ $ 29 $ $ (1001011111010011000001100001010000) $ $ \textbf{8} $ $ \textbf{232} $
Table 11.  Neighbours of $ \mathcal{N}_{(12)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 12 $ $ 30 $ $ (1000100110000001010101010100001001) $ $ \textbf{9} $ $ \textbf{191} $ $ 12 $ $ 31 $ $ (0111010100101000000001100101011010) $ $ \textbf{9} $ $ \textbf{197} $
$ 12 $ $ 32 $ $ (1111100000101101001011110111000010) $ $ \textbf{9} $ $ \textbf{212} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 12 $ $ 30 $ $ (1000100110000001010101010100001001) $ $ \textbf{9} $ $ \textbf{191} $ $ 12 $ $ 31 $ $ (0111010100101000000001100101011010) $ $ \textbf{9} $ $ \textbf{197} $
$ 12 $ $ 32 $ $ (1111100000101101001011110111000010) $ $ \textbf{9} $ $ \textbf{212} $
Table 12.  Neighbour of $ \mathcal{N}_{(14)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 14 $ $ 33 $ $ (1011110001101000100111010000010000) $ $ \textbf{9} $ $ \textbf{227} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 14 $ $ 33 $ $ (1011110001101000100111010000010000) $ $ \textbf{9} $ $ \textbf{227} $
Table 13.  Neighbours of $ \mathcal{N}_{(15)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 15 $ $ 34 $ $ (1011000011111110011101011000000101) $ $ \textbf{9} $ $ \textbf{231} $ $ 15 $ $ 35 $ $ (1111110111110000010110000100010011) $ $ \textbf{9} $ $ \textbf{232} $
$ 15 $ $ 36 $ $ (0011000011010010100011010000111001) $ $ \textbf{9} $ $ \textbf{233} $ $ 15 $ $ 37 $ $ (0000000000111100000000101100111101) $ $ \textbf{9} $ $ \textbf{234} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 15 $ $ 34 $ $ (1011000011111110011101011000000101) $ $ \textbf{9} $ $ \textbf{231} $ $ 15 $ $ 35 $ $ (1111110111110000010110000100010011) $ $ \textbf{9} $ $ \textbf{232} $
$ 15 $ $ 36 $ $ (0011000011010010100011010000111001) $ $ \textbf{9} $ $ \textbf{233} $ $ 15 $ $ 37 $ $ (0000000000111100000000101100111101) $ $ \textbf{9} $ $ \textbf{234} $
Table 14.  Neighbours of $ \mathcal{N}_{(17)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 17 $ $ 38 $ $ (0110000100000010110010110000110100) $ $ \textbf{9} $ $ \textbf{237} $ $ 17 $ $ 39 $ $ (0011111001100000111100111101010010) $ $ \textbf{9} $ $ \textbf{238} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 17 $ $ 38 $ $ (0110000100000010110010110000110100) $ $ \textbf{9} $ $ \textbf{237} $ $ 17 $ $ 39 $ $ (0011111001100000111100111101010010) $ $ \textbf{9} $ $ \textbf{238} $
Table 15.  Neighbours of $ \mathcal{N}_{(18)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 18 $ $ 40 $ $ (0110010110000001001110111010011100) $ $ \textbf{9} $ $ \textbf{239} $ $ 18 $ $ 41 $ $ (1111000010111111010100101000111101) $ $ \textbf{9} $ $ \textbf{241} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 18 $ $ 40 $ $ (0110010110000001001110111010011100) $ $ \textbf{9} $ $ \textbf{239} $ $ 18 $ $ 41 $ $ (1111000010111111010100101000111101) $ $ \textbf{9} $ $ \textbf{241} $
Table 16.  Neighbours of $ \mathcal{N}_{(19)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 19 $ $ 42 $ $ (1011110110001100110101001011001010) $ $ \textbf{9} $ $ \textbf{242} $ $ 19 $ $ 43 $ $ (0101010111011010111100000111011110) $ $ \textbf{9} $ $ \textbf{244} $
$ 19 $ $ 44 $ $ (1010110011000110001101001010010000) $ $ \textbf{9} $ $ \textbf{246} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 19 $ $ 42 $ $ (1011110110001100110101001011001010) $ $ \textbf{9} $ $ \textbf{242} $ $ 19 $ $ 43 $ $ (0101010111011010111100000111011110) $ $ \textbf{9} $ $ \textbf{244} $
$ 19 $ $ 44 $ $ (1010110011000110001101001010010000) $ $ \textbf{9} $ $ \textbf{246} $
Table 17.  Neighbours of $ \mathcal{N}_{(20)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 20 $ $ 45 $ $ (1111111110101111010101000110001101) $ $ \textbf{8} $ $ \textbf{236} $ $ 20 $ $ 46 $ $ (1010000010110000100011110101111001) $ $ \textbf{8} $ $ \textbf{239} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 20 $ $ 45 $ $ (1111111110101111010101000110001101) $ $ \textbf{8} $ $ \textbf{236} $ $ 20 $ $ 46 $ $ (1010000010110000100011110101111001) $ $ \textbf{8} $ $ \textbf{239} $
Table 18.  Neighbours of $ \mathcal{N}_{(21)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 21 $ $ 47 $ $ (0100000110001011000001000101101010) $ $ \textbf{6} $ $ \textbf{208} $ $ 21 $ $ 48 $ $ (1101111000000001010010000110110001) $ $ \textbf{6} $ $ \textbf{209} $
$ 21 $ $ 49 $ $ (1011101011101010010101111101000101) $ $ \textbf{6} $ $ \textbf{212} $ $ 21 $ $ 50 $ $ (1111110111000100010010111011100000) $ $ \textbf{6} $ $ \textbf{214} $
$ 21 $ $ 51 $ $ (1011111101010010111011101111111100) $ $ \textbf{6} $ $ \textbf{215} $ $ 21 $ $ 52 $ $ (0000000001100001001001100111011100) $ $ \textbf{6} $ $ \textbf{218} $
$ 21 $ $ 53 $ $ (1111011001110010100001101011011011) $ $ \textbf{6} $ $ \textbf{220} $ $ 21 $ $ 54 $ $ (0100000001010101001001101001000011) $ $ \textbf{7} $ $ \textbf{219} $
$ 21 $ $ 55 $ $ (1100000000000001110100001001100111) $ $ \textbf{7} $ $ \textbf{223} $ $ 21 $ $ 56 $ $ (0000001101000100110101111100001111) $ $ \textbf{7} $ $ \textbf{225} $
$ 21 $ $ 57 $ $ (1111011001111010111110100111110110) $ $ \textbf{7} $ $ \textbf{226} $ $ 21 $ $ 58 $ $ (0010011000011000001000111001000101) $ $ \textbf{7} $ $ \textbf{227} $
$ 21 $ $ 59 $ $ (1001010101101111101110000000000011) $ $ \textbf{7} $ $ \textbf{230} $ $ 21 $ $ 60 $ $ (1111110101100000100011001110100110) $ $ \textbf{8} $ $ \textbf{235} $
$ 21 $ $ 61 $ $ (0110000110110100100100101111100100) $ $ \textbf{8} $ $ \textbf{238} $ $ 21 $ $ 62 $ $ (1010010010111110111001111011100010) $ $ \textbf{8} $ $ \textbf{240} $
$ 21 $ $ 63 $ $ (1101011100111011010011111101111110) $ $ \textbf{8} $ $ \textbf{241} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 21 $ $ 47 $ $ (0100000110001011000001000101101010) $ $ \textbf{6} $ $ \textbf{208} $ $ 21 $ $ 48 $ $ (1101111000000001010010000110110001) $ $ \textbf{6} $ $ \textbf{209} $
$ 21 $ $ 49 $ $ (1011101011101010010101111101000101) $ $ \textbf{6} $ $ \textbf{212} $ $ 21 $ $ 50 $ $ (1111110111000100010010111011100000) $ $ \textbf{6} $ $ \textbf{214} $
$ 21 $ $ 51 $ $ (1011111101010010111011101111111100) $ $ \textbf{6} $ $ \textbf{215} $ $ 21 $ $ 52 $ $ (0000000001100001001001100111011100) $ $ \textbf{6} $ $ \textbf{218} $
$ 21 $ $ 53 $ $ (1111011001110010100001101011011011) $ $ \textbf{6} $ $ \textbf{220} $ $ 21 $ $ 54 $ $ (0100000001010101001001101001000011) $ $ \textbf{7} $ $ \textbf{219} $
$ 21 $ $ 55 $ $ (1100000000000001110100001001100111) $ $ \textbf{7} $ $ \textbf{223} $ $ 21 $ $ 56 $ $ (0000001101000100110101111100001111) $ $ \textbf{7} $ $ \textbf{225} $
$ 21 $ $ 57 $ $ (1111011001111010111110100111110110) $ $ \textbf{7} $ $ \textbf{226} $ $ 21 $ $ 58 $ $ (0010011000011000001000111001000101) $ $ \textbf{7} $ $ \textbf{227} $
$ 21 $ $ 59 $ $ (1001010101101111101110000000000011) $ $ \textbf{7} $ $ \textbf{230} $ $ 21 $ $ 60 $ $ (1111110101100000100011001110100110) $ $ \textbf{8} $ $ \textbf{235} $
$ 21 $ $ 61 $ $ (0110000110110100100100101111100100) $ $ \textbf{8} $ $ \textbf{238} $ $ 21 $ $ 62 $ $ (1010010010111110111001111011100010) $ $ \textbf{8} $ $ \textbf{240} $
$ 21 $ $ 63 $ $ (1101011100111011010011111101111110) $ $ \textbf{8} $ $ \textbf{241} $
Table 19.  Neighbours of $ \mathcal{N}_{(22)} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 22 $ $ 63 $ $ (0011111100111010011001010011100100) $ $ \textbf{5} $ $ \textbf{207} $ $ 22 $ $ 64 $ $ (1011111100101111100110111111111101) $ $ \textbf{6} $ $ \textbf{213} $
$ 22 $ $ 65 $ $ (1001011101001100101011001000110100) $ $ \textbf{6} $ $ \textbf{217} $ $ 22 $ $ 66 $ $ (0100111101000110110111101101111110) $ $ \textbf{6} $ $ \textbf{219} $
$ 22 $ $ 68 $ $ (1000010000111101010101110010010011) $ $ \textbf{7} $ $ \textbf{229} $ $ 22 $ $ 69 $ $ (0100000001011101000011001111110011) $ $ \textbf{8} $ $ \textbf{237} $
$ 22 $ $ 70 $ $ (1111111101001111101100000010100000) $ $ \textbf{8} $ $ \textbf{242} $ $ 22 $ $ 71 $ $ (0010000100001001100001001110111000) $ $ \textbf{8} $ $ \textbf{243} $
$ 22 $ $ 72 $ $ (1110110000001011011001101011011010) $ $ \textbf{8} $ $ \textbf{247} $
$ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{(i)} $ $ \mathcal{M}_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ \gamma $ $ \beta $
$ 22 $ $ 63 $ $ (0011111100111010011001010011100100) $ $ \textbf{5} $ $ \textbf{207} $ $ 22 $ $ 64 $ $ (1011111100101111100110111111111101) $ $ \textbf{6} $ $ \textbf{213} $
$ 22 $ $ 65 $ $ (1001011101001100101011001000110100) $ $ \textbf{6} $ $ \textbf{217} $ $ 22 $ $ 66 $ $ (0100111101000110110111101101111110) $ $ \textbf{6} $ $ \textbf{219} $
$ 22 $ $ 68 $ $ (1000010000111101010101110010010011) $ $ \textbf{7} $ $ \textbf{229} $ $ 22 $ $ 69 $ $ (0100000001011101000011001111110011) $ $ \textbf{8} $ $ \textbf{237} $
$ 22 $ $ 70 $ $ (1111111101001111101100000010100000) $ $ \textbf{8} $ $ \textbf{242} $ $ 22 $ $ 71 $ $ (0010000100001001100001001110111000) $ $ \textbf{8} $ $ \textbf{243} $
$ 22 $ $ 72 $ $ (1110110000001011011001101011011010) $ $ \textbf{8} $ $ \textbf{247} $
[1]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[2]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037

[3]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020077

[4]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[5]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[6]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[7]

Christos Koukouvinos, Dimitris E. Simos. Construction of new self-dual codes over $GF(5)$ using skew-Hadamard matrices. Advances in Mathematics of Communications, 2009, 3 (3) : 251-263. doi: 10.3934/amc.2009.3.251

[8]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[9]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[10]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[11]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[12]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[13]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[14]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[15]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[16]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[17]

Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012

[18]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[19]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[20]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (9)
  • HTML views (16)
  • Cited by (0)

[Back to Top]