doi: 10.3934/amc.2020114

Constructions of linear codes with small hulls from association schemes

School of Mathematical Sciences, Zhejiang University, Zhejiang, 310027, China

* Corresponding author: Ran Tao

Received  April 2020 Revised  August 2020 Published  October 2020

The intersection of a linear code and its dual is called the hull of this code. The code is a linear complementary dual (LCD) code if the dimension of its hull is zero. In this paper, we develop a method to construct LCD codes and linear codes with one-dimensional hull by association schemes. One of constructions in this paper generalizes that of linear codes associated with Gauss periods given in [5]. In addition, we present a generalized construction of linear codes, which can provide more LCD codes and linear codes with one-dimensional hull. We also present some examples of LCD MDS, LCD almost MDS codes, and MDS, almost MDS codes with one-dimensional hull from our constructions.

Citation: Ye Wang, Ran Tao. Constructions of linear codes with small hulls from association schemes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020114
References:
[1]

E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin/Cummings, London, 1984.  Google Scholar

[2]

L. D. BaumertW. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory, 14 (1982), 67-82.  doi: 10.1016/0022-314X(82)90058-0.  Google Scholar

[3]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular Graphs, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar

[4]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.  Google Scholar

[5]

C. CarletC. Li and S. Mesnager, Linear codes with small hulls in semi-primitive case, Des. Codes Cryptogr., 87 (2019), 3063-3075.  doi: 10.1007/s10623-019-00663-4.  Google Scholar

[6]

C. CarletS. MesnagerC. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605-2618.  doi: 10.1007/s10623-018-0463-8.  Google Scholar

[7]

C. CarletS. MesnagerC. Tang and Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inform. Theory, 65 (2019), 39-49.  doi: 10.1109/TIT.2018.2829873.  Google Scholar

[8]

C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.  Google Scholar

[9]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar

[10] K. Feng, An Introduction to Algebraic Number Theory, Science Press, Beijing, 2000.   Google Scholar
[11]

T. Feng and K. Momihara, Three-class association schemes from cyclotomy, J. Combin. Theory Ser. A, 120 (2013), 1202-1215.  doi: 10.1016/j.jcta.2013.03.002.  Google Scholar

[12]

K. Ireland and M. Rosen, A classical introduction to modern number theory, 2$^nd$ edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4.  Google Scholar

[13]

L. Jin and C. Xing, Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound, IEEE Trans. Inform. Theory, 64 (2018), 6277-6282.  doi: 10.1109/TIT.2017.2773057.  Google Scholar

[14]

H. Kharaghani and S. Suda, Symmetric Bush-type generalized Hadamard matrices and association schemes, Finite Fields Appl., 37 (2016), 72-84.  doi: 10.1016/j.ffa.2015.09.003.  Google Scholar

[15]

C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.  Google Scholar

[16]

C. Li and P. Zeng, Constructions of linear codes with one-dimensional hull, IEEE Trans. Inform. Theory, 65 (2019), 1668-1676.  doi: 10.1109/TIT.2018.2863693.  Google Scholar

[17]

S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.   Google Scholar

[18]

X. Liu and H. Liu, Matrix-product complementary dual codes, preprint, arXiv: 1604.03774. Google Scholar

[19]

J. L. Massey, Linear codes with complementary duals, Discret. Math., 106 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[20]

S. MesnagerC. Tang and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory, 64 (2018), 2390-2397.  doi: 10.1109/TIT.2017.2766075.  Google Scholar

[21]

B. PangS. Zhu and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex., 31 (2018), 1065-1077.  doi: 10.1007/s11424-017-6301-7.  Google Scholar

[22]

N. Sendrier, Finding the permutation between equivalent linear codes: The support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203.  doi: 10.1109/18.850662.  Google Scholar

[23]

N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, in : Proceedings of IEEE ISIT2001, Washington, DC, 2001. doi: 10.1109/ISIT.2001.935876.  Google Scholar

[24]

X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2019), 1950150. doi: 10.1142/S0219498819501500.  Google Scholar

[25]

E. R. van Dam and M. Muzychuk, Some implications on amorphic association schemes, J. Combin. Theory Ser. A, 117 (2010), 111-127.  doi: 10.1016/j.jcta.2009.03.018.  Google Scholar

show all references

References:
[1]

E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin/Cummings, London, 1984.  Google Scholar

[2]

L. D. BaumertW. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory, 14 (1982), 67-82.  doi: 10.1016/0022-314X(82)90058-0.  Google Scholar

[3]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular Graphs, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar

[4]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.  Google Scholar

[5]

C. CarletC. Li and S. Mesnager, Linear codes with small hulls in semi-primitive case, Des. Codes Cryptogr., 87 (2019), 3063-3075.  doi: 10.1007/s10623-019-00663-4.  Google Scholar

[6]

C. CarletS. MesnagerC. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605-2618.  doi: 10.1007/s10623-018-0463-8.  Google Scholar

[7]

C. CarletS. MesnagerC. Tang and Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inform. Theory, 65 (2019), 39-49.  doi: 10.1109/TIT.2018.2829873.  Google Scholar

[8]

C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.  Google Scholar

[9]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar

[10] K. Feng, An Introduction to Algebraic Number Theory, Science Press, Beijing, 2000.   Google Scholar
[11]

T. Feng and K. Momihara, Three-class association schemes from cyclotomy, J. Combin. Theory Ser. A, 120 (2013), 1202-1215.  doi: 10.1016/j.jcta.2013.03.002.  Google Scholar

[12]

K. Ireland and M. Rosen, A classical introduction to modern number theory, 2$^nd$ edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4.  Google Scholar

[13]

L. Jin and C. Xing, Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound, IEEE Trans. Inform. Theory, 64 (2018), 6277-6282.  doi: 10.1109/TIT.2017.2773057.  Google Scholar

[14]

H. Kharaghani and S. Suda, Symmetric Bush-type generalized Hadamard matrices and association schemes, Finite Fields Appl., 37 (2016), 72-84.  doi: 10.1016/j.ffa.2015.09.003.  Google Scholar

[15]

C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.  Google Scholar

[16]

C. Li and P. Zeng, Constructions of linear codes with one-dimensional hull, IEEE Trans. Inform. Theory, 65 (2019), 1668-1676.  doi: 10.1109/TIT.2018.2863693.  Google Scholar

[17]

S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.   Google Scholar

[18]

X. Liu and H. Liu, Matrix-product complementary dual codes, preprint, arXiv: 1604.03774. Google Scholar

[19]

J. L. Massey, Linear codes with complementary duals, Discret. Math., 106 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[20]

S. MesnagerC. Tang and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory, 64 (2018), 2390-2397.  doi: 10.1109/TIT.2017.2766075.  Google Scholar

[21]

B. PangS. Zhu and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex., 31 (2018), 1065-1077.  doi: 10.1007/s11424-017-6301-7.  Google Scholar

[22]

N. Sendrier, Finding the permutation between equivalent linear codes: The support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203.  doi: 10.1109/18.850662.  Google Scholar

[23]

N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, in : Proceedings of IEEE ISIT2001, Washington, DC, 2001. doi: 10.1109/ISIT.2001.935876.  Google Scholar

[24]

X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2019), 1950150. doi: 10.1142/S0219498819501500.  Google Scholar

[25]

E. R. van Dam and M. Muzychuk, Some implications on amorphic association schemes, J. Combin. Theory Ser. A, 117 (2010), 111-127.  doi: 10.1016/j.jcta.2009.03.018.  Google Scholar

[1]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[2]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[3]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[4]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[5]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[6]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[7]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[8]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[9]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[10]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

2019 Impact Factor: 0.734

Article outline

[Back to Top]