# American Institute of Mathematical Sciences

doi: 10.3934/amc.2020114
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Constructions of linear codes with small hulls from association schemes

 School of Mathematical Sciences, Zhejiang University, Zhejiang, 310027, China

* Corresponding author: Ran Tao

Received  April 2020 Revised  August 2020 Early access October 2020

The intersection of a linear code and its dual is called the hull of this code. The code is a linear complementary dual (LCD) code if the dimension of its hull is zero. In this paper, we develop a method to construct LCD codes and linear codes with one-dimensional hull by association schemes. One of constructions in this paper generalizes that of linear codes associated with Gauss periods given in [5]. In addition, we present a generalized construction of linear codes, which can provide more LCD codes and linear codes with one-dimensional hull. We also present some examples of LCD MDS, LCD almost MDS codes, and MDS, almost MDS codes with one-dimensional hull from our constructions.

Citation: Ye Wang, Ran Tao. Constructions of linear codes with small hulls from association schemes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020114
##### References:
 [1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin/Cummings, London, 1984.  Google Scholar [2] L. D. Baumert, W. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory, 14 (1982), 67-82.  doi: 10.1016/0022-314X(82)90058-0.  Google Scholar [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular Graphs, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar [4] C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.  Google Scholar [5] C. Carlet, C. Li and S. Mesnager, Linear codes with small hulls in semi-primitive case, Des. Codes Cryptogr., 87 (2019), 3063-3075.  doi: 10.1007/s10623-019-00663-4.  Google Scholar [6] C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605-2618.  doi: 10.1007/s10623-018-0463-8.  Google Scholar [7] C. Carlet, S. Mesnager, C. Tang and Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inform. Theory, 65 (2019), 39-49.  doi: 10.1109/TIT.2018.2829873.  Google Scholar [8] C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.  Google Scholar [9] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar [10] K. Feng, An Introduction to Algebraic Number Theory, Science Press, Beijing, 2000.   Google Scholar [11] T. Feng and K. Momihara, Three-class association schemes from cyclotomy, J. Combin. Theory Ser. A, 120 (2013), 1202-1215.  doi: 10.1016/j.jcta.2013.03.002.  Google Scholar [12] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2$^nd$ edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4.  Google Scholar [13] L. Jin and C. Xing, Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound, IEEE Trans. Inform. Theory, 64 (2018), 6277-6282.  doi: 10.1109/TIT.2017.2773057.  Google Scholar [14] H. Kharaghani and S. Suda, Symmetric Bush-type generalized Hadamard matrices and association schemes, Finite Fields Appl., 37 (2016), 72-84.  doi: 10.1016/j.ffa.2015.09.003.  Google Scholar [15] C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.  Google Scholar [16] C. Li and P. Zeng, Constructions of linear codes with one-dimensional hull, IEEE Trans. Inform. Theory, 65 (2019), 1668-1676.  doi: 10.1109/TIT.2018.2863693.  Google Scholar [17] S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.   Google Scholar [18] X. Liu and H. Liu, Matrix-product complementary dual codes, preprint, arXiv: 1604.03774. Google Scholar [19] J. L. Massey, Linear codes with complementary duals, Discret. Math., 106 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar [20] S. Mesnager, C. Tang and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory, 64 (2018), 2390-2397.  doi: 10.1109/TIT.2017.2766075.  Google Scholar [21] B. Pang, S. Zhu and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex., 31 (2018), 1065-1077.  doi: 10.1007/s11424-017-6301-7.  Google Scholar [22] N. Sendrier, Finding the permutation between equivalent linear codes: The support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203.  doi: 10.1109/18.850662.  Google Scholar [23] N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, in : Proceedings of IEEE ISIT2001, Washington, DC, 2001. doi: 10.1109/ISIT.2001.935876.  Google Scholar [24] X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2019), 1950150. doi: 10.1142/S0219498819501500.  Google Scholar [25] E. R. van Dam and M. Muzychuk, Some implications on amorphic association schemes, J. Combin. Theory Ser. A, 117 (2010), 111-127.  doi: 10.1016/j.jcta.2009.03.018.  Google Scholar

show all references

##### References:
 [1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin/Cummings, London, 1984.  Google Scholar [2] L. D. Baumert, W. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory, 14 (1982), 67-82.  doi: 10.1016/0022-314X(82)90058-0.  Google Scholar [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular Graphs, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar [4] C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.  Google Scholar [5] C. Carlet, C. Li and S. Mesnager, Linear codes with small hulls in semi-primitive case, Des. Codes Cryptogr., 87 (2019), 3063-3075.  doi: 10.1007/s10623-019-00663-4.  Google Scholar [6] C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605-2618.  doi: 10.1007/s10623-018-0463-8.  Google Scholar [7] C. Carlet, S. Mesnager, C. Tang and Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inform. Theory, 65 (2019), 39-49.  doi: 10.1109/TIT.2018.2829873.  Google Scholar [8] C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.  Google Scholar [9] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar [10] K. Feng, An Introduction to Algebraic Number Theory, Science Press, Beijing, 2000.   Google Scholar [11] T. Feng and K. Momihara, Three-class association schemes from cyclotomy, J. Combin. Theory Ser. A, 120 (2013), 1202-1215.  doi: 10.1016/j.jcta.2013.03.002.  Google Scholar [12] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2$^nd$ edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4.  Google Scholar [13] L. Jin and C. Xing, Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound, IEEE Trans. Inform. Theory, 64 (2018), 6277-6282.  doi: 10.1109/TIT.2017.2773057.  Google Scholar [14] H. Kharaghani and S. Suda, Symmetric Bush-type generalized Hadamard matrices and association schemes, Finite Fields Appl., 37 (2016), 72-84.  doi: 10.1016/j.ffa.2015.09.003.  Google Scholar [15] C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.  Google Scholar [16] C. Li and P. Zeng, Constructions of linear codes with one-dimensional hull, IEEE Trans. Inform. Theory, 65 (2019), 1668-1676.  doi: 10.1109/TIT.2018.2863693.  Google Scholar [17] S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.   Google Scholar [18] X. Liu and H. Liu, Matrix-product complementary dual codes, preprint, arXiv: 1604.03774. Google Scholar [19] J. L. Massey, Linear codes with complementary duals, Discret. Math., 106 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar [20] S. Mesnager, C. Tang and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory, 64 (2018), 2390-2397.  doi: 10.1109/TIT.2017.2766075.  Google Scholar [21] B. Pang, S. Zhu and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex., 31 (2018), 1065-1077.  doi: 10.1007/s11424-017-6301-7.  Google Scholar [22] N. Sendrier, Finding the permutation between equivalent linear codes: The support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203.  doi: 10.1109/18.850662.  Google Scholar [23] N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, in : Proceedings of IEEE ISIT2001, Washington, DC, 2001. doi: 10.1109/ISIT.2001.935876.  Google Scholar [24] X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2019), 1950150. doi: 10.1142/S0219498819501500.  Google Scholar [25] E. R. van Dam and M. Muzychuk, Some implications on amorphic association schemes, J. Combin. Theory Ser. A, 117 (2010), 111-127.  doi: 10.1016/j.jcta.2009.03.018.  Google Scholar
 [1] Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $4p^n$. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021019 [2] Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2020, 16 (2) : 991-1008. doi: 10.3934/jimo.2018189 [3] Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 [4] Panchi Li, Zetao Ma, Rui Du, Jingrun Chen. A Gauss-Seidel projection method with the minimal number of updates for the stray field in micromagnetics simulations. Discrete & Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022002 [5] María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018 [6] Wenxue Huang, Yuanyi Pan, Lihong Zheng. Proportional association based roi model. Big Data & Information Analytics, 2017, 2 (2) : 119-125. doi: 10.3934/bdia.2017004 [7] Xinmei Huang, Qin Yue, Yansheng Wu, Xiaoping Shi. Ternary Primitive LCD BCH codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021014 [8] Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103 [9] Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045 [10] Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 [11] Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269 [12] Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644 [13] Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040 [14] Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 [15] Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 [16] Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 [17] Haode Yan, Hao Liu, Chengju Li, Shudi Yang. Parameters of LCD BCH codes with two lengths. Advances in Mathematics of Communications, 2018, 12 (3) : 579-594. doi: 10.3934/amc.2018034 [18] Ranya Djihad Boulanouar, Aicha Batoul, Delphine Boucher. An overview on skew constacyclic codes and their subclass of LCD codes. Advances in Mathematics of Communications, 2021, 15 (4) : 611-632. doi: 10.3934/amc.2020085 [19] Yong Xia. Convex hull of the orthogonal similarity set with applications in quadratic assignment problems. Journal of Industrial & Management Optimization, 2013, 9 (3) : 689-701. doi: 10.3934/jimo.2013.9.689 [20] Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

2020 Impact Factor: 0.935

Article outline

[Back to Top]