-
Previous Article
Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $
- AMC Home
- This Issue
-
Next Article
On the diffusion of the Improved Generalized Feistel
Rotated $ A_n $-lattice codes of full diversity
School of Sciences, Department of Mathematics, São Paulo State University - UNESP, Bauru, SP 17033-360, BR |
Some important properties of lattices are packing density and full diversity, which may be good for signal transmission over both Gaussian and Rayleigh fading channel, respectively. The algebraic lattices are constructed through twisted homomorphism of some modules in the ring of integers of a number field $ \mathbb{K} $. In this paper, we present a construction of some families of rotated $ A_n- $lattices, for $ n = 2^{r-2}-1 $, $ r \geq 4 $, via totally real subfield of cyclotomic fields. Furthermore, closed-form expressions for the minimum product distance of those lattices are obtained through algebraic properties.
References:
[1] |
E. Bayer-Fluckiger, Ideal lattices, in A Panorama of Number Theory or the View from Baker's
Garden, Cambridge Univ. Press, Cambridge, 2002,165-184.
doi: 10.1017/CBO9780511542961.012. |
[2] |
E. Bayer-Fluckiger, Lattices and number fields, in Algebraic Geometry: Hirzebruch 70, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 69–84.
doi: 10.1090/conm/241/03628. |
[3] |
E. Bayer-Fluckiger,
Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory, 121 (2006), 305-323.
doi: 10.1016/j.jnt.2006.03.002. |
[4] |
E. Bayer-Fluckiger and G. Nebe, On the Euclidian minimum of some real number fields, J. Théor. Nombres Bordeaux, 17 (2005), 437–454.
doi: 10.5802/jtnb.500. |
[5] |
E. Bayer-Fluckiger, F. Oggier and E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, 50 (2004), 702–714.
doi: 10.1109/TIT.2004.825045. |
[6] |
E. Bayer-Fluckiger and I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. (Basel), 86 (2006), 217–225.
doi: 10.1007/s00013-005-1469-9. |
[7] |
K. Boullé and J. C. Belfiore, Modulation scheme design for the Rayleigh fading channel, Proc. Conf. Information Science and System, (1992), 288–293. Google Scholar |
[8] |
J. Boutros, E. Viterbo, C. Rastello and J.-C. Belfiore, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory, 42 (1996), 502–518.
doi: 10.1109/18.485720. |
[9] |
H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. (2), 170 (2009), 1003–1050.
doi: 10.4007/annals.2009.170.1003. |
[10] |
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Fundamental Principles of Mathematical Sciences, 290, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4757-2249-9. |
[11] |
J. H. Conway and N. J. A. Sloane, The optimal isodual lattice quantizer in three dimensions, Adv. Math. Commun., 1 (2007), 257–260.
doi: 10.3934/amc.2007.1.257. |
[12] |
P. Elia, B. A. Sethuraman and P. V. Kumar, Perfect space-time codes for any number of antennas, IEEE Trans. Inform. Theory, 53 (2007), 3853–3868.
doi: 10.1109/TIT.2007.907502. |
[13] |
X. Hou and F. Oggier, Modular lattices from a variation of Construction A over number fields, Adv. Math. Commun., 11 (2017), 719–745.
doi: 10.3934/amc.2017053. |
[14] |
G. C. Jorge, A. A. de Andrade, S. I. R. Costa and J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra, 429 (2015), 218–235.
doi: 10.1016/j.jalgebra.2014.12.044. |
[15] |
G. C. Jorge and S. I. R. Costa, On rotated $D_n$-lattices constructed via totally real number fields, Arch. Math. (Basel), 100 (2013), 323–332.
doi: 10.1007/s00013-013-0501-8. |
[16] |
G. C. Jorge, A. J. Ferrari and S. I. R. Costa, Rotated $D_n$-lattices, J. Number Theory, 132 (2012), 2397–2406.
doi: 10.1016/j.jnt.2012.05.002. |
[17] |
D. Micciancio and S. Goldwasser, Complexity of Lattice Problems. A Cryptographic Perspective, The Kluwer International Series in Engineering and Computer Science, 671, Kluwer Academic Publishers, Boston, MA, 2002.
doi: 10.1007/978-1-4615-0897-7. |
[18] |
F. Oggier, Algebraic Methods for Channel Coding, Ph.D Thesis, École Polytechnique Fédérale in Lausanne, Lausanne, 2005. Google Scholar |
[19] |
F. Oggier and E. Bayer-Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, Proceedings of IEEE International Symposium on Information Theory, Yokohama, Japan, 2003. Google Scholar |
[20] |
P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin Co., Boston, MA, 1970,109pp. |
[21] |
L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-1934-7. |
show all references
References:
[1] |
E. Bayer-Fluckiger, Ideal lattices, in A Panorama of Number Theory or the View from Baker's
Garden, Cambridge Univ. Press, Cambridge, 2002,165-184.
doi: 10.1017/CBO9780511542961.012. |
[2] |
E. Bayer-Fluckiger, Lattices and number fields, in Algebraic Geometry: Hirzebruch 70, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 69–84.
doi: 10.1090/conm/241/03628. |
[3] |
E. Bayer-Fluckiger,
Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory, 121 (2006), 305-323.
doi: 10.1016/j.jnt.2006.03.002. |
[4] |
E. Bayer-Fluckiger and G. Nebe, On the Euclidian minimum of some real number fields, J. Théor. Nombres Bordeaux, 17 (2005), 437–454.
doi: 10.5802/jtnb.500. |
[5] |
E. Bayer-Fluckiger, F. Oggier and E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, 50 (2004), 702–714.
doi: 10.1109/TIT.2004.825045. |
[6] |
E. Bayer-Fluckiger and I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. (Basel), 86 (2006), 217–225.
doi: 10.1007/s00013-005-1469-9. |
[7] |
K. Boullé and J. C. Belfiore, Modulation scheme design for the Rayleigh fading channel, Proc. Conf. Information Science and System, (1992), 288–293. Google Scholar |
[8] |
J. Boutros, E. Viterbo, C. Rastello and J.-C. Belfiore, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory, 42 (1996), 502–518.
doi: 10.1109/18.485720. |
[9] |
H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. (2), 170 (2009), 1003–1050.
doi: 10.4007/annals.2009.170.1003. |
[10] |
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Fundamental Principles of Mathematical Sciences, 290, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4757-2249-9. |
[11] |
J. H. Conway and N. J. A. Sloane, The optimal isodual lattice quantizer in three dimensions, Adv. Math. Commun., 1 (2007), 257–260.
doi: 10.3934/amc.2007.1.257. |
[12] |
P. Elia, B. A. Sethuraman and P. V. Kumar, Perfect space-time codes for any number of antennas, IEEE Trans. Inform. Theory, 53 (2007), 3853–3868.
doi: 10.1109/TIT.2007.907502. |
[13] |
X. Hou and F. Oggier, Modular lattices from a variation of Construction A over number fields, Adv. Math. Commun., 11 (2017), 719–745.
doi: 10.3934/amc.2017053. |
[14] |
G. C. Jorge, A. A. de Andrade, S. I. R. Costa and J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra, 429 (2015), 218–235.
doi: 10.1016/j.jalgebra.2014.12.044. |
[15] |
G. C. Jorge and S. I. R. Costa, On rotated $D_n$-lattices constructed via totally real number fields, Arch. Math. (Basel), 100 (2013), 323–332.
doi: 10.1007/s00013-013-0501-8. |
[16] |
G. C. Jorge, A. J. Ferrari and S. I. R. Costa, Rotated $D_n$-lattices, J. Number Theory, 132 (2012), 2397–2406.
doi: 10.1016/j.jnt.2012.05.002. |
[17] |
D. Micciancio and S. Goldwasser, Complexity of Lattice Problems. A Cryptographic Perspective, The Kluwer International Series in Engineering and Computer Science, 671, Kluwer Academic Publishers, Boston, MA, 2002.
doi: 10.1007/978-1-4615-0897-7. |
[18] |
F. Oggier, Algebraic Methods for Channel Coding, Ph.D Thesis, École Polytechnique Fédérale in Lausanne, Lausanne, 2005. Google Scholar |
[19] |
F. Oggier and E. Bayer-Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, Proceedings of IEEE International Symposium on Information Theory, Yokohama, Japan, 2003. Google Scholar |
[20] |
P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin Co., Boston, MA, 1970,109pp. |
[21] |
L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-1934-7. |
[1] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[2] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[3] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[4] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[5] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[6] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[7] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[8] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[9] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[10] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[13] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]