doi: 10.3934/amc.2020120
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Three classes of partitioned difference families and their optimal constant composition codes

1. 

College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China

2. 

Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

3. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received  February 2020 Revised  August 2020 Early access December 2020

Cyclotomy, firstly introduced by Gauss, is an important topic in Mathematics since it has a number of applications in number theory, combinatorics, coding theory and cryptography. Depending on $ v $ prime or composite, cyclotomy on a residue class ring $ {\mathbb{Z}}_{v} $ can be divided into classical cyclotomy or generalized cyclotomy. Inspired by a foregoing work of Zeng et al. [40], we introduce a generalized cyclotomy of order $ e $ on the ring $ {\rm GF}(q_1)\times {\rm GF}(q_2)\times \cdots \times {\rm GF}(q_k) $, where $ q_i $ and $ q_j $ ($ i\neq j $) may not be co-prime, which includes classical cyclotomy as a special case. Here, $ q_1 $, $ q_2 $, $ \cdots $, $ q_k $ are powers of primes with an integer $ e|(q_i-1) $ for any $ 1\leq i\leq k $. Then we obtain some basic properties of the corresponding generalized cyclotomic numbers. Furthermore, we propose three classes of partitioned difference families by means of the generalized cyclotomy above and $ d $-form functions with difference balanced property. Afterwards, three families of optimal constant composition codes from these partitioned difference families are obtained, and their parameters are also summarized.

Citation: Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020120
References:
[1]

K. ArasuJ. Dillon and K. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 61 (2015), 3276-3304.  doi: 10.1109/TIT.2015.2418204.

[2]

M. Buratti, Hadamard partitioned difference families and their descendants, Cryptogr. Commun., 11 (2019), 557-562.  doi: 10.1007/s12095-018-0308-3.

[3]

M. Buratti, On disjoint $(v, k, k-1)$ difference families, Des. Codes Cryptogr., 87 (2019), 745-755.  doi: 10.1007/s10623-018-0511-4.

[4]

M. Buratti and D. Jungnickel, Partitioned difference families versus zero-difference balanced functions, Des. Codes Cryptogr., 87 (2019), 2461-2467.  doi: 10.1007/s10623-019-00632-x.

[5]

M. Buratti, J. Yan and C. Wang, From a 1-rotational RBIBD to a partitioned difference family, Electron. J. Comb., 17 (2010), pp. R139.

[6]

H. CaiZ. ZhouX. Tang and Y. Miao, Zero-difference balanced functions with new parameters and their applications, IEEE Trans. Inf. Theory, 63 (2017), 4379-4387.  doi: 10.1109/TIT.2017.2675441.

[7]

Y. Chang and C. Ding, Constructions of external difference families and disjoint difference families, Des. Codes Cryptogr., 40 (2006), 167-185.  doi: 10.1007/s10623-006-0005-7.

[8]

W. Chu and C. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.

[9]

J. Chung and K. Yang, $k$-fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.  doi: 10.1109/TIT.2011.2112235.

[10]

C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., 23 (2013), 8-34.  doi: 10.1016/j.ffa.2013.03.006.

[11]

C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.  doi: 10.1109/TIT.2008.2006420.

[12]

C. Ding, Optimal and perfect difference systems of sets, J. Comb. Theory, Series A, 116 (2009), 109-119.  doi: 10.1016/j.jcta.2008.05.007.

[13]

C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory and Practice, 6 (2012), 3-19.  doi: 10.1080/15598608.2012.647479.

[14]

C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inf. Theory, 51 (2005), 3671-3674.  doi: 10.1109/TIT.2005.855612.

[15]

C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.  doi: 10.1006/ffta.1998.0207.

[16]

C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$, IEEE Trans. Inf. Theory, 45 (1999), 467-474.  doi: 10.1109/18.748996.

[17]

C. Fan and G. Ge, A unified approach to Whiteman's and Ding-Helleseth's generalized cyclotomy over residue class rings, IEEE Trans. Inf. Theory, 60 (2014), 1326-1336.  doi: 10.1109/TIT.2013.2290694.

[18]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.

[19]

C. F. Gauss, Disquisitiones Arithmeticae, New York, USA: Springer-Verlag, 1986.

[20]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.

[21]

B. GordonW. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math., 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2.

[22]

Y. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 4279-4285.  doi: 10.1109/TIT.2009.2025569.

[23]

T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 48 (2002), 2868-2872.  doi: 10.1109/TIT.2002.804052.

[24]

H. HuS. ShaoG. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Trans. Inf. Theory, 60 (2013), 5054-5064.  doi: 10.1109/TIT.2014.2327625.

[25]

L. Hu and Q. Yue, Gauss periods and codebooks from generalized cyclotomic sets of order four, Des. Codes Cryptogr., 69 (2013), 233-246.  doi: 10.1007/s10623-012-9648-8.

[26]

A. Klapper, $d$-form sequence: Families of sequences with low correlaltion values and large linear spans, IEEE Trans. Inf. Theory, 51 (1995), 1469-1477.  doi: 10.1109/18.370143.

[27]

S. LiH. Wei and G. Ge, Generic constructions for partitioned difference families with applications: A unified combinatorial approach, Des. Codes Cryptogr., 82 (2017), 583-599.  doi: 10.1007/s10623-016-0182-y.

[28]

H. A. Lin, From cyclic Hadamard difference sets to perfectly balanced sequences, Ph.D. thesis, University of Southern California, 1998.

[29]

J. LiuY. JiangQ. Zheng and D. Lin, A new construction of zero-difference balanced functions and two applications, Des. Codes Cryptogr., 87 (2019), 2251-2265.  doi: 10.1007/s10623-019-00616-x.

[30]

Y. LuoF. FuA. Vinck and W. Chen, On constant-composition codes over ${{\mathbb{Z}}_{q}}$, IEEE Trans. Inf. Theory, 49 (2003), 3010-3016.  doi: 10.1109/TIT.2003.819339.

[31]

J.-S. No, New cyclic difference sets with Singer parameters constructed from $d$-homogeneous functions, Des. Codes Cryptogr., 33 (2004), 199-213.  doi: 10.1023/B:DESI.0000036246.52472.81.

[32]

T. Storer, Cyclotomy and Difference Sets, Chicago: Markham Pub. Co., 1967.

[33]

Q. Wang and Y. Zhou, Sets of zero-difference balanced functions and their applications, Adv. Math. Commun., 8 (2014), 83-101.  doi: 10.3934/amc.2014.8.83.

[34]

X. Wang and J. Wang, Partitioned difference families and almost difference sets, J. Stat. Plan. Inference, 141 (2011), 1899-1909.  doi: 10.1016/j.jspi.2010.12.002.

[35]

A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121.  doi: 10.1215/ijm/1255631810.

[36]

R. M. Wilson, Cyclotomic and difference families in elementary abelian groups, J. Number Theory, 4 (1972), 17-47.  doi: 10.1016/0022-314X(72)90009-1.

[37]

Y. Yang, Z. Zhou and X. Tang, Two classes of zero-difference balanced functions and their optimal constant composition codes, in Proceedings of 2016 IEEE International Symposium on Information Theory, (2016), 1327–1330. doi: 10.1109/TIT.2008.2006420.

[38]

Z. YiZ. Lin and L. Ke, A generic method to construct zero-difference balanced functions, Cryptogr. Commun., 10 (2018), 591-609.  doi: 10.1007/s12095-017-0247-4.

[39]

J. YinX. Shan and Z. Tian, Constructions of partitioned difference families, Eur. J. Comb., 29 (2008), 1507-1519.  doi: 10.1016/j.ejc.2007.06.006.

[40]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.

[41]

Z. Zha and L. Hu, Cyclotomic constructions of zero-difference balanced functions with applications, IEEE Trans. Inf. Theory, 61 (2015), 1491–1495. doi: 10.1109/TIT.2014.2388231.

[42]

Z. ZhouX. TangD. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inf. Theory, 58 (2012), 139-145.  doi: 10.1109/TIT.2011.2171418.

show all references

References:
[1]

K. ArasuJ. Dillon and K. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 61 (2015), 3276-3304.  doi: 10.1109/TIT.2015.2418204.

[2]

M. Buratti, Hadamard partitioned difference families and their descendants, Cryptogr. Commun., 11 (2019), 557-562.  doi: 10.1007/s12095-018-0308-3.

[3]

M. Buratti, On disjoint $(v, k, k-1)$ difference families, Des. Codes Cryptogr., 87 (2019), 745-755.  doi: 10.1007/s10623-018-0511-4.

[4]

M. Buratti and D. Jungnickel, Partitioned difference families versus zero-difference balanced functions, Des. Codes Cryptogr., 87 (2019), 2461-2467.  doi: 10.1007/s10623-019-00632-x.

[5]

M. Buratti, J. Yan and C. Wang, From a 1-rotational RBIBD to a partitioned difference family, Electron. J. Comb., 17 (2010), pp. R139.

[6]

H. CaiZ. ZhouX. Tang and Y. Miao, Zero-difference balanced functions with new parameters and their applications, IEEE Trans. Inf. Theory, 63 (2017), 4379-4387.  doi: 10.1109/TIT.2017.2675441.

[7]

Y. Chang and C. Ding, Constructions of external difference families and disjoint difference families, Des. Codes Cryptogr., 40 (2006), 167-185.  doi: 10.1007/s10623-006-0005-7.

[8]

W. Chu and C. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.

[9]

J. Chung and K. Yang, $k$-fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.  doi: 10.1109/TIT.2011.2112235.

[10]

C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., 23 (2013), 8-34.  doi: 10.1016/j.ffa.2013.03.006.

[11]

C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.  doi: 10.1109/TIT.2008.2006420.

[12]

C. Ding, Optimal and perfect difference systems of sets, J. Comb. Theory, Series A, 116 (2009), 109-119.  doi: 10.1016/j.jcta.2008.05.007.

[13]

C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory and Practice, 6 (2012), 3-19.  doi: 10.1080/15598608.2012.647479.

[14]

C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inf. Theory, 51 (2005), 3671-3674.  doi: 10.1109/TIT.2005.855612.

[15]

C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.  doi: 10.1006/ffta.1998.0207.

[16]

C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$, IEEE Trans. Inf. Theory, 45 (1999), 467-474.  doi: 10.1109/18.748996.

[17]

C. Fan and G. Ge, A unified approach to Whiteman's and Ding-Helleseth's generalized cyclotomy over residue class rings, IEEE Trans. Inf. Theory, 60 (2014), 1326-1336.  doi: 10.1109/TIT.2013.2290694.

[18]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.

[19]

C. F. Gauss, Disquisitiones Arithmeticae, New York, USA: Springer-Verlag, 1986.

[20]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.

[21]

B. GordonW. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math., 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2.

[22]

Y. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 4279-4285.  doi: 10.1109/TIT.2009.2025569.

[23]

T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 48 (2002), 2868-2872.  doi: 10.1109/TIT.2002.804052.

[24]

H. HuS. ShaoG. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Trans. Inf. Theory, 60 (2013), 5054-5064.  doi: 10.1109/TIT.2014.2327625.

[25]

L. Hu and Q. Yue, Gauss periods and codebooks from generalized cyclotomic sets of order four, Des. Codes Cryptogr., 69 (2013), 233-246.  doi: 10.1007/s10623-012-9648-8.

[26]

A. Klapper, $d$-form sequence: Families of sequences with low correlaltion values and large linear spans, IEEE Trans. Inf. Theory, 51 (1995), 1469-1477.  doi: 10.1109/18.370143.

[27]

S. LiH. Wei and G. Ge, Generic constructions for partitioned difference families with applications: A unified combinatorial approach, Des. Codes Cryptogr., 82 (2017), 583-599.  doi: 10.1007/s10623-016-0182-y.

[28]

H. A. Lin, From cyclic Hadamard difference sets to perfectly balanced sequences, Ph.D. thesis, University of Southern California, 1998.

[29]

J. LiuY. JiangQ. Zheng and D. Lin, A new construction of zero-difference balanced functions and two applications, Des. Codes Cryptogr., 87 (2019), 2251-2265.  doi: 10.1007/s10623-019-00616-x.

[30]

Y. LuoF. FuA. Vinck and W. Chen, On constant-composition codes over ${{\mathbb{Z}}_{q}}$, IEEE Trans. Inf. Theory, 49 (2003), 3010-3016.  doi: 10.1109/TIT.2003.819339.

[31]

J.-S. No, New cyclic difference sets with Singer parameters constructed from $d$-homogeneous functions, Des. Codes Cryptogr., 33 (2004), 199-213.  doi: 10.1023/B:DESI.0000036246.52472.81.

[32]

T. Storer, Cyclotomy and Difference Sets, Chicago: Markham Pub. Co., 1967.

[33]

Q. Wang and Y. Zhou, Sets of zero-difference balanced functions and their applications, Adv. Math. Commun., 8 (2014), 83-101.  doi: 10.3934/amc.2014.8.83.

[34]

X. Wang and J. Wang, Partitioned difference families and almost difference sets, J. Stat. Plan. Inference, 141 (2011), 1899-1909.  doi: 10.1016/j.jspi.2010.12.002.

[35]

A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121.  doi: 10.1215/ijm/1255631810.

[36]

R. M. Wilson, Cyclotomic and difference families in elementary abelian groups, J. Number Theory, 4 (1972), 17-47.  doi: 10.1016/0022-314X(72)90009-1.

[37]

Y. Yang, Z. Zhou and X. Tang, Two classes of zero-difference balanced functions and their optimal constant composition codes, in Proceedings of 2016 IEEE International Symposium on Information Theory, (2016), 1327–1330. doi: 10.1109/TIT.2008.2006420.

[38]

Z. YiZ. Lin and L. Ke, A generic method to construct zero-difference balanced functions, Cryptogr. Commun., 10 (2018), 591-609.  doi: 10.1007/s12095-017-0247-4.

[39]

J. YinX. Shan and Z. Tian, Constructions of partitioned difference families, Eur. J. Comb., 29 (2008), 1507-1519.  doi: 10.1016/j.ejc.2007.06.006.

[40]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.

[41]

Z. Zha and L. Hu, Cyclotomic constructions of zero-difference balanced functions with applications, IEEE Trans. Inf. Theory, 61 (2015), 1491–1495. doi: 10.1109/TIT.2014.2388231.

[42]

Z. ZhouX. TangD. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inf. Theory, 58 (2012), 139-145.  doi: 10.1109/TIT.2011.2171418.

Table 1.  $ (A, K, \lambda) $ PDF constructed in this paper
$ A $ $ K $ $ \lambda $ Constraints Ref.
$ R\times {\mathbb{Z}}_{e} $ $ [{(e-1)}^{\frac{ev-1}{e-1}}1^{1}] $ $ e-2 $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e(e-1)|(q_i-1) $ for $ 1\leq i\leq k $ Theorem 3.4
$ R $ $ [e^{\frac{v-1}{2e}}1^{\frac{v+1}{2}}] $ $ \frac{e-1}{2} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e\geq 3 $ is odd such that $ e|(q_i-1) $ for $ 1\leq i\leq k $ Theorem 3.6
$ {\mathbb{Z}}_{\frac{q^m-1}{e}} \times {\mathbb{Z}}_{k} $ $ [k\frac{q^{m-1}-1}{e}^{1}1^{k \frac{q^m-q^{m-1}}{e}}] $ $ k \frac{q^{m-2}-1}{e} $ $ e |(q-1), \operatorname{gcd}(e, m)=1 $, $ 1 \leq k \leq e $, $ m>2 $ Theorem 3.9
$ A $ $ K $ $ \lambda $ Constraints Ref.
$ R\times {\mathbb{Z}}_{e} $ $ [{(e-1)}^{\frac{ev-1}{e-1}}1^{1}] $ $ e-2 $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e(e-1)|(q_i-1) $ for $ 1\leq i\leq k $ Theorem 3.4
$ R $ $ [e^{\frac{v-1}{2e}}1^{\frac{v+1}{2}}] $ $ \frac{e-1}{2} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e\geq 3 $ is odd such that $ e|(q_i-1) $ for $ 1\leq i\leq k $ Theorem 3.6
$ {\mathbb{Z}}_{\frac{q^m-1}{e}} \times {\mathbb{Z}}_{k} $ $ [k\frac{q^{m-1}-1}{e}^{1}1^{k \frac{q^m-q^{m-1}}{e}}] $ $ k \frac{q^{m-2}-1}{e} $ $ e |(q-1), \operatorname{gcd}(e, m)=1 $, $ 1 \leq k \leq e $, $ m>2 $ Theorem 3.9
Table 2.  Some optimal CCCs with parameters $ (n, M, d, [\omega_0, \omega_1, \cdots, \omega_{m-1}])_m $ from our PDFs
Parameters Constraints
$ (e v, e v, e v-e+2, [{(e-1)}^{\frac{ev-1}{e-1}}1^{1}])_\frac{ev+e-2}{e-1} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e(e-1)|(q_i-1) $ for $ 1\leq i\leq k $
$ \left(v, v, v-\frac{e-1}{2}, [e^{\frac{v-1}{2e}}1^{\frac{v+1}{2}}]\right)_{\frac{v-1}{2 e}+\frac{v+1}{2}} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e\geq 3 $ is odd such that $ e|(q_i-1) $ for $ 1\leq i\leq k $
$ \left(k \frac{q^{m}-1}{e}, k \frac{q^{m}-1}{e}, k \frac{q^{m-2}-1}{e}, [1^{k \frac{q^m-q^{m-1}}{e}} k\frac{q^{m-1}-1}{e}^{1}]\right)_{k \frac{q^m-q^{m-1}}{e}+1} $ $ e|(q-1), \gcd(e, m)=1, $ $ 1\leq k\leq e, m>2 $
Parameters Constraints
$ (e v, e v, e v-e+2, [{(e-1)}^{\frac{ev-1}{e-1}}1^{1}])_\frac{ev+e-2}{e-1} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e(e-1)|(q_i-1) $ for $ 1\leq i\leq k $
$ \left(v, v, v-\frac{e-1}{2}, [e^{\frac{v-1}{2e}}1^{\frac{v+1}{2}}]\right)_{\frac{v-1}{2 e}+\frac{v+1}{2}} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e\geq 3 $ is odd such that $ e|(q_i-1) $ for $ 1\leq i\leq k $
$ \left(k \frac{q^{m}-1}{e}, k \frac{q^{m}-1}{e}, k \frac{q^{m-2}-1}{e}, [1^{k \frac{q^m-q^{m-1}}{e}} k\frac{q^{m-1}-1}{e}^{1}]\right)_{k \frac{q^m-q^{m-1}}{e}+1} $ $ e|(q-1), \gcd(e, m)=1, $ $ 1\leq k\leq e, m>2 $
[1]

Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83

[2]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[3]

Marco Buratti, Dieter Jungnickel. Partitioned difference families: The storm has not yet passed. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021030

[4]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic and Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[5]

Hengming Zhao, Rongcun Qin, Dianhua Wu. Balanced ($\mathbb{Z} _{2u}\times \mathbb{Z}_{38v}$, {3, 4, 5}, 1) difference packings and related codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022008

[6]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[7]

Xiujuan Wang, Mingshu Peng. Rich dynamics in some generalized difference equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3205-3212. doi: 10.3934/dcdss.2020191

[8]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure and Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[9]

Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681

[10]

Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691

[11]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[12]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[13]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[14]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[15]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[16]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[17]

Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186

[18]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[19]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[20]

Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (421)
  • HTML views (644)
  • Cited by (0)

Other articles
by authors

[Back to Top]