doi: 10.3934/amc.2020122

Codes over $ \frak m $-adic completion rings

Department of Mathematics, Bu Ali Sina University, Hamedan, Iran

*Corresponding author

Received  April 2020 Revised  September 2020 Published  December 2020

The theory of linear codes over finite rings has been generalized to linear codes over infinite rings in two special cases; the ring of $ p $-adic integers and formal power series ring. These rings are examples of complete discrete valuation rings (CDVRs). In this paper, we generalize the theory of linear codes over the above two rings to linear codes over complete local principal ideal rings. In particular, we obtain the structure of linear and constacyclic codes over CDVRs. For this generalization, first we study linear codes over $ \hat{R}_{ \frak m} $, where $ R $ is a commutative Noetherian ring, $ \frak m = \langle \gamma\rangle $ is a maximal ideal of $ R $, and $ \hat{R}_{ \frak m} $ denotes the $ \frak m $-adic completion of $ R $. We call these codes, $ \frak m $-adic codes. Using the structure of $ \frak m $-adic codes, we present the structure of linear and constacyclic codes over complete local principal ideal rings.

Citation: Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, doi: 10.3934/amc.2020122
References:
[1]

M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[2]

A. R. Calderbank and N. J. A. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.  doi: 10.1007/BF01390768.  Google Scholar

[3]

I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.  doi: 10.1090/S0002-9947-1946-0016094-3.  Google Scholar

[4]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[5]

S. T. DoughertyJ. Kim and H. Kulosman, MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.  doi: 10.1007/s10623-008-9215-5.  Google Scholar

[6]

S. T. DoughertyS. Y. Kim and Y. H. Park, Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.  doi: 10.1016/j.disc.2005.08.004.  Google Scholar

[7]

S. T. DoughertyH. Liu and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.   Google Scholar

[8]

S. T. Dougherty and H. Liu, Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.  doi: 10.1016/S0252-9602(11)60233-6.  Google Scholar

[9]

S. T. Dougherty and Y. H. Park, Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.  doi: 10.1007/s10623-005-2542-x.  Google Scholar

[10]

D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[11]

E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[12]

K. Guenda and T. A. Gulliver, MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.  doi: 10.1016/j.ffa.2012.09.003.  Google Scholar

[13]

S. Jean-Pierre, Local Fields, Berlin, New York, 1980. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[14]

F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[15]

H. Matsumura, Commutative Ring Theory, Cambridge, 1989. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[16]

B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

K. R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.  doi: 10.1112/plms/s3-26.2.249.  Google Scholar

[18]

K. Samei and S. Mahmoudi, Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.  doi: 10.1016/j.disc.2016.11.007.  Google Scholar

[19]

K. Samei and S. Mahmoudi, Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.  doi: 10.3934/amc.2018006.  Google Scholar

[20]

P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988. doi: 10.1007/BFb0019872.  Google Scholar

show all references

References:
[1]

M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[2]

A. R. Calderbank and N. J. A. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.  doi: 10.1007/BF01390768.  Google Scholar

[3]

I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.  doi: 10.1090/S0002-9947-1946-0016094-3.  Google Scholar

[4]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[5]

S. T. DoughertyJ. Kim and H. Kulosman, MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.  doi: 10.1007/s10623-008-9215-5.  Google Scholar

[6]

S. T. DoughertyS. Y. Kim and Y. H. Park, Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.  doi: 10.1016/j.disc.2005.08.004.  Google Scholar

[7]

S. T. DoughertyH. Liu and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.   Google Scholar

[8]

S. T. Dougherty and H. Liu, Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.  doi: 10.1016/S0252-9602(11)60233-6.  Google Scholar

[9]

S. T. Dougherty and Y. H. Park, Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.  doi: 10.1007/s10623-005-2542-x.  Google Scholar

[10]

D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[11]

E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[12]

K. Guenda and T. A. Gulliver, MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.  doi: 10.1016/j.ffa.2012.09.003.  Google Scholar

[13]

S. Jean-Pierre, Local Fields, Berlin, New York, 1980. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[14]

F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[15]

H. Matsumura, Commutative Ring Theory, Cambridge, 1989. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[16]

B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

K. R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.  doi: 10.1112/plms/s3-26.2.249.  Google Scholar

[18]

K. Samei and S. Mahmoudi, Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.  doi: 10.1016/j.disc.2016.11.007.  Google Scholar

[19]

K. Samei and S. Mahmoudi, Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.  doi: 10.3934/amc.2018006.  Google Scholar

[20]

P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988. doi: 10.1007/BFb0019872.  Google Scholar

[1]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[2]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[3]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[4]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[5]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[6]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[7]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[10]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[11]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[12]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[13]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[14]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (19)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]