-
Previous Article
New quantum codes from constacyclic codes over the ring $ R_{k,m} $
- AMC Home
- This Issue
-
Next Article
On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $
Codes over $ \frak m $-adic completion rings
Department of Mathematics, Bu Ali Sina University, Hamedan, Iran |
The theory of linear codes over finite rings has been generalized to linear codes over infinite rings in two special cases; the ring of $ p $-adic integers and formal power series ring. These rings are examples of complete discrete valuation rings (CDVRs). In this paper, we generalize the theory of linear codes over the above two rings to linear codes over complete local principal ideal rings. In particular, we obtain the structure of linear and constacyclic codes over CDVRs. For this generalization, first we study linear codes over $ \hat{R}_{ \frak m} $, where $ R $ is a commutative Noetherian ring, $ \frak m = \langle \gamma\rangle $ is a maximal ideal of $ R $, and $ \hat{R}_{ \frak m} $ denotes the $ \frak m $-adic completion of $ R $. We call these codes, $ \frak m $-adic codes. Using the structure of $ \frak m $-adic codes, we present the structure of linear and constacyclic codes over complete local principal ideal rings.
References:
[1] |
M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969.
doi: 10.1007/978-1-4612-0873-0. |
[2] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[3] |
I. S. Cohen,
On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
doi: 10.1090/S0002-9947-1946-0016094-3. |
[4] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[5] |
S. T. Dougherty, J. Kim and H. Kulosman,
MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5. |
[6] |
S. T. Dougherty, S. Y. Kim and Y. H. Park,
Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.
doi: 10.1016/j.disc.2005.08.004. |
[7] |
S. T. Dougherty, H. Liu and Y. H. Park,
Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
|
[8] |
S. T. Dougherty and H. Liu,
Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.
doi: 10.1016/S0252-9602(11)60233-6. |
[9] |
S. T. Dougherty and Y. H. Park,
Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.
doi: 10.1007/s10623-005-2542-x. |
[10] |
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000.
doi: 10.1007/978-1-4612-0873-0. |
[12] |
K. Guenda and T. A. Gulliver,
MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.
doi: 10.1016/j.ffa.2012.09.003. |
[13] |
S. Jean-Pierre, Local Fields, Berlin, New York, 1980.
doi: 10.1007/978-1-4612-0873-0. |
[14] |
F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
doi: 10.1007/978-1-4612-0873-0. |
[15] |
H. Matsumura, Commutative Ring Theory, Cambridge, 1989.
doi: 10.1007/978-1-4612-0873-0. |
[16] |
B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
K. R. McLean,
Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.
doi: 10.1112/plms/s3-26.2.249. |
[18] |
K. Samei and S. Mahmoudi,
Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.
doi: 10.1016/j.disc.2016.11.007. |
[19] |
K. Samei and S. Mahmoudi,
Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.
doi: 10.3934/amc.2018006. |
[20] |
P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988.
doi: 10.1007/BFb0019872. |
show all references
References:
[1] |
M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969.
doi: 10.1007/978-1-4612-0873-0. |
[2] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[3] |
I. S. Cohen,
On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
doi: 10.1090/S0002-9947-1946-0016094-3. |
[4] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[5] |
S. T. Dougherty, J. Kim and H. Kulosman,
MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5. |
[6] |
S. T. Dougherty, S. Y. Kim and Y. H. Park,
Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.
doi: 10.1016/j.disc.2005.08.004. |
[7] |
S. T. Dougherty, H. Liu and Y. H. Park,
Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
|
[8] |
S. T. Dougherty and H. Liu,
Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.
doi: 10.1016/S0252-9602(11)60233-6. |
[9] |
S. T. Dougherty and Y. H. Park,
Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.
doi: 10.1007/s10623-005-2542-x. |
[10] |
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000.
doi: 10.1007/978-1-4612-0873-0. |
[12] |
K. Guenda and T. A. Gulliver,
MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.
doi: 10.1016/j.ffa.2012.09.003. |
[13] |
S. Jean-Pierre, Local Fields, Berlin, New York, 1980.
doi: 10.1007/978-1-4612-0873-0. |
[14] |
F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
doi: 10.1007/978-1-4612-0873-0. |
[15] |
H. Matsumura, Commutative Ring Theory, Cambridge, 1989.
doi: 10.1007/978-1-4612-0873-0. |
[16] |
B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
K. R. McLean,
Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.
doi: 10.1112/plms/s3-26.2.249. |
[18] |
K. Samei and S. Mahmoudi,
Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.
doi: 10.1016/j.disc.2016.11.007. |
[19] |
K. Samei and S. Mahmoudi,
Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.
doi: 10.3934/amc.2018006. |
[20] |
P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988.
doi: 10.1007/BFb0019872. |
[1] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[2] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[3] |
Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096 |
[4] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[5] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[6] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[7] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[8] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[9] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[10] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[11] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[12] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[13] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[14] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[15] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[16] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[17] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[18] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[19] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[20] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
2019 Impact Factor: 0.734
Tools
Article outline
[Back to Top]