-
Previous Article
New quantum codes from constacyclic codes over the ring $ R_{k,m} $
- AMC Home
- This Issue
-
Next Article
On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $
Codes over $ \frak m $-adic completion rings
Department of Mathematics, Bu Ali Sina University, Hamedan, Iran |
The theory of linear codes over finite rings has been generalized to linear codes over infinite rings in two special cases; the ring of $ p $-adic integers and formal power series ring. These rings are examples of complete discrete valuation rings (CDVRs). In this paper, we generalize the theory of linear codes over the above two rings to linear codes over complete local principal ideal rings. In particular, we obtain the structure of linear and constacyclic codes over CDVRs. For this generalization, first we study linear codes over $ \hat{R}_{ \frak m} $, where $ R $ is a commutative Noetherian ring, $ \frak m = \langle \gamma\rangle $ is a maximal ideal of $ R $, and $ \hat{R}_{ \frak m} $ denotes the $ \frak m $-adic completion of $ R $. We call these codes, $ \frak m $-adic codes. Using the structure of $ \frak m $-adic codes, we present the structure of linear and constacyclic codes over complete local principal ideal rings.
References:
[1] |
M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969.
doi: 10.1007/978-1-4612-0873-0. |
[2] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[3] |
I. S. Cohen,
On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
doi: 10.1090/S0002-9947-1946-0016094-3. |
[4] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[5] |
S. T. Dougherty, J. Kim and H. Kulosman,
MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5. |
[6] |
S. T. Dougherty, S. Y. Kim and Y. H. Park,
Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.
doi: 10.1016/j.disc.2005.08.004. |
[7] |
S. T. Dougherty, H. Liu and Y. H. Park,
Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
|
[8] |
S. T. Dougherty and H. Liu,
Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.
doi: 10.1016/S0252-9602(11)60233-6. |
[9] |
S. T. Dougherty and Y. H. Park,
Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.
doi: 10.1007/s10623-005-2542-x. |
[10] |
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000.
doi: 10.1007/978-1-4612-0873-0. |
[12] |
K. Guenda and T. A. Gulliver,
MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.
doi: 10.1016/j.ffa.2012.09.003. |
[13] |
S. Jean-Pierre, Local Fields, Berlin, New York, 1980.
doi: 10.1007/978-1-4612-0873-0. |
[14] |
F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
doi: 10.1007/978-1-4612-0873-0. |
[15] |
H. Matsumura, Commutative Ring Theory, Cambridge, 1989.
doi: 10.1007/978-1-4612-0873-0. |
[16] |
B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
K. R. McLean,
Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.
doi: 10.1112/plms/s3-26.2.249. |
[18] |
K. Samei and S. Mahmoudi,
Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.
doi: 10.1016/j.disc.2016.11.007. |
[19] |
K. Samei and S. Mahmoudi,
Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.
doi: 10.3934/amc.2018006. |
[20] |
P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988.
doi: 10.1007/BFb0019872. |
show all references
References:
[1] |
M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969.
doi: 10.1007/978-1-4612-0873-0. |
[2] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[3] |
I. S. Cohen,
On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
doi: 10.1090/S0002-9947-1946-0016094-3. |
[4] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[5] |
S. T. Dougherty, J. Kim and H. Kulosman,
MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5. |
[6] |
S. T. Dougherty, S. Y. Kim and Y. H. Park,
Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.
doi: 10.1016/j.disc.2005.08.004. |
[7] |
S. T. Dougherty, H. Liu and Y. H. Park,
Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
|
[8] |
S. T. Dougherty and H. Liu,
Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.
doi: 10.1016/S0252-9602(11)60233-6. |
[9] |
S. T. Dougherty and Y. H. Park,
Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.
doi: 10.1007/s10623-005-2542-x. |
[10] |
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000.
doi: 10.1007/978-1-4612-0873-0. |
[12] |
K. Guenda and T. A. Gulliver,
MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.
doi: 10.1016/j.ffa.2012.09.003. |
[13] |
S. Jean-Pierre, Local Fields, Berlin, New York, 1980.
doi: 10.1007/978-1-4612-0873-0. |
[14] |
F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
doi: 10.1007/978-1-4612-0873-0. |
[15] |
H. Matsumura, Commutative Ring Theory, Cambridge, 1989.
doi: 10.1007/978-1-4612-0873-0. |
[16] |
B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
K. R. McLean,
Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.
doi: 10.1112/plms/s3-26.2.249. |
[18] |
K. Samei and S. Mahmoudi,
Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.
doi: 10.1016/j.disc.2016.11.007. |
[19] |
K. Samei and S. Mahmoudi,
Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.
doi: 10.3934/amc.2018006. |
[20] |
P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988.
doi: 10.1007/BFb0019872. |
[1] |
Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020097 |
[2] |
Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $ \bf{333} $ in the setting of a binary $ \bf{q} $-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029 |
[3] |
Hideaki Takagi. Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1701-1726. doi: 10.3934/jimo.2018028 |
[4] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[5] |
Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016 |
[6] |
Lin Yi, Xiangyong Zeng, Zhimin Sun. On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020091 |
[7] |
Zalman Balanov, Yakov Krasnov. On good deformations of $ A_m $-singularities. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1851-1866. doi: 10.3934/dcdss.2019122 |
[8] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[9] |
Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020094 |
[10] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[11] |
Van Hoang Nguyen. A simple proof of the Adams type inequalities in $ {\mathbb R}^{2m} $. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5755-5764. doi: 10.3934/dcds.2020244 |
[12] |
Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096 |
[13] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[14] |
José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149 |
[15] |
Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020135 |
[16] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[17] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[18] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[19] |
Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030 |
[20] |
Jin-Yun Guo, Cong Xiao, Xiaojian Lu. On $ n $-slice algebras and related algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021009 |
2019 Impact Factor: 0.734
Tools
Article outline
[Back to Top]