doi: 10.3934/amc.2020124

Complete weight enumerator of torsion codes

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255000, China

* Corresponding author: Jian Gao

Received  July 2020 Revised  September 2020 Published  December 2020

Fund Project: This research is supported by the National Natural Science Foundation of China (Nos. 11701336, 11626144, 11671235, 12071264)

In this paper, we introduce two classes of MacDonald codes over the finite non-chain ring $ \mathbb{F}_p+v\mathbb{F}_p+v^2\mathbb{F}_p $ and their torsion codes which are linear codes over $ \mathbb{F}_p $, where $ p $ is an odd prime and $ v^3 = v $. We give the complete weight enumerator of two classes of torsion codes. As an application, systematic authentication codes are obtained by these torsion codes.

Citation: Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020124
References:
[1]

S. BaeC. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 60 (2015), 2275-2287.  doi: 10.1016/j.disc.2015.05.016.  Google Scholar

[2]

I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM Journal on Discrete Mathematics, 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar

[3]

Y. Cengellenmis and M. Department, MacDonald codes over the ring $\mathbb{F}_3+ v\mathbb{F}_3$, IUG Journal of Natural and Engineering Studues, 20 (2012), 109-112.   Google Scholar

[4]

C. Colbourn and M. Gupta, On quaternary MacDonald codes, Proceedings ITCC 2003, International Conference on Information Technology: Coding and Computing, 5 (2003), 212-215.   Google Scholar

[5]

A. Dertli and Y. Cengellenmis, Macdonald codes over the ring $\mathbb{F}_2+v\mathbb{F}_2$, International Journal of Algebra, 5 (2011), 985-991.   Google Scholar

[6]

L. Diao, J. Gao and J. Lu, On $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes, Advances in Mathematics of Communications, 14, (2020), 555–572. doi: 10.3934/amc.2018038.  Google Scholar

[7]

C. Ding and J. Yin, Algebraic constructions of constant composition codes, International Conference on Information Technology, 51 (2005), 1585-1589.  doi: 10.1109/TIT.2005.844087.  Google Scholar

[8]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[9]

C. DingT. HellesethT. Kløve and X. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar

[10]

T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar

[11]

X. Hou and J. Gao, $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes are asymptotically good, Journal of Applied Mathematics and Computing, (2020), https://doi.org/10.1007/s12190-020-01466-w. Google Scholar

[12]

A. Kuzmin and A. Nechaev, Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discrete Applied Mathematics, 111 (2001), 117-137.  doi: 10.1016/S0166-218X(00)00348-6.  Google Scholar

[13]

C. LiQ. Yue and F.-W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Crytography, 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar

[14]

C. LiS. BaeJ. AhnS. Yang and Z. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar

[15]

J. Luo and T. Helleset, Constant composition codes as subcodes of cyclic codes, IEEE Transactions on Information Theory, 57 (2011), 7482-7488.  doi: 10.1109/TIT.2011.2161631.  Google Scholar

[16]

J. E. MacDonald, Design methods for maximum minimum-distance error-correcting codes, IBM Journal of Research and Development, 4 (1960), 43-57.  doi: 10.1147/rd.41.0043.  Google Scholar

[17]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.  Google Scholar

[18]

A. M. Patel, Maximal $q$-ary linear codes with large minimum distance, IEEE Transactions on Information Theory, 21 (1975), 106-110.  doi: 10.1109/tit.1975.1055315.  Google Scholar

[19]

R. S. Rees and D. R. Stinson, Combinatorial characterizations of authentication codes Ⅱ, Designs, Codes and Cryptography, 2 (1992), 175-187.  doi: 10.1007/BF00124896.  Google Scholar

[20]

G. J. Simmons, Authentication theory coding theory, International Cryptology Conference, (1985), 411–4317. Google Scholar

[21]

X. WangJ. Gao and F.-W. Fu, Secret sharing schemes from linear codes over $\mathbb{F}_p+ v\mathbb{F}_p$, International Journal of Foundations of Computer Science, 27 (2016), 595-605.  doi: 10.1142/S0129054116500180.  Google Scholar

[22]

X. WangJ. Gao and F.-W. Fu, Complete weight enumerators of two classes of linear codes, Cryptography and Communications, 9 (2017), 545-562.  doi: 10.1007/s12095-016-0198-1.  Google Scholar

[23]

Y. Wang and J. Gao, MacDonald codes over the ring $\mathbb{F}_p+ v\mathbb{F}_p+v^2\mathbb{F}_p$, Computational and Applied Mathematics, 38 (2019), 169. doi: 10.1007/s40314-019-0937-y.  Google Scholar

[24]

S. Yang and Z. Yao, Complete weight enumerators of a family of three-weight linear codes, Designs, Codes and Cryptography, 82 (2017), 663-674.  doi: 10.1007/s10623-016-0191-x.  Google Scholar

show all references

References:
[1]

S. BaeC. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 60 (2015), 2275-2287.  doi: 10.1016/j.disc.2015.05.016.  Google Scholar

[2]

I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM Journal on Discrete Mathematics, 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar

[3]

Y. Cengellenmis and M. Department, MacDonald codes over the ring $\mathbb{F}_3+ v\mathbb{F}_3$, IUG Journal of Natural and Engineering Studues, 20 (2012), 109-112.   Google Scholar

[4]

C. Colbourn and M. Gupta, On quaternary MacDonald codes, Proceedings ITCC 2003, International Conference on Information Technology: Coding and Computing, 5 (2003), 212-215.   Google Scholar

[5]

A. Dertli and Y. Cengellenmis, Macdonald codes over the ring $\mathbb{F}_2+v\mathbb{F}_2$, International Journal of Algebra, 5 (2011), 985-991.   Google Scholar

[6]

L. Diao, J. Gao and J. Lu, On $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes, Advances in Mathematics of Communications, 14, (2020), 555–572. doi: 10.3934/amc.2018038.  Google Scholar

[7]

C. Ding and J. Yin, Algebraic constructions of constant composition codes, International Conference on Information Technology, 51 (2005), 1585-1589.  doi: 10.1109/TIT.2005.844087.  Google Scholar

[8]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[9]

C. DingT. HellesethT. Kløve and X. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar

[10]

T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar

[11]

X. Hou and J. Gao, $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes are asymptotically good, Journal of Applied Mathematics and Computing, (2020), https://doi.org/10.1007/s12190-020-01466-w. Google Scholar

[12]

A. Kuzmin and A. Nechaev, Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discrete Applied Mathematics, 111 (2001), 117-137.  doi: 10.1016/S0166-218X(00)00348-6.  Google Scholar

[13]

C. LiQ. Yue and F.-W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Crytography, 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar

[14]

C. LiS. BaeJ. AhnS. Yang and Z. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar

[15]

J. Luo and T. Helleset, Constant composition codes as subcodes of cyclic codes, IEEE Transactions on Information Theory, 57 (2011), 7482-7488.  doi: 10.1109/TIT.2011.2161631.  Google Scholar

[16]

J. E. MacDonald, Design methods for maximum minimum-distance error-correcting codes, IBM Journal of Research and Development, 4 (1960), 43-57.  doi: 10.1147/rd.41.0043.  Google Scholar

[17]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.  Google Scholar

[18]

A. M. Patel, Maximal $q$-ary linear codes with large minimum distance, IEEE Transactions on Information Theory, 21 (1975), 106-110.  doi: 10.1109/tit.1975.1055315.  Google Scholar

[19]

R. S. Rees and D. R. Stinson, Combinatorial characterizations of authentication codes Ⅱ, Designs, Codes and Cryptography, 2 (1992), 175-187.  doi: 10.1007/BF00124896.  Google Scholar

[20]

G. J. Simmons, Authentication theory coding theory, International Cryptology Conference, (1985), 411–4317. Google Scholar

[21]

X. WangJ. Gao and F.-W. Fu, Secret sharing schemes from linear codes over $\mathbb{F}_p+ v\mathbb{F}_p$, International Journal of Foundations of Computer Science, 27 (2016), 595-605.  doi: 10.1142/S0129054116500180.  Google Scholar

[22]

X. WangJ. Gao and F.-W. Fu, Complete weight enumerators of two classes of linear codes, Cryptography and Communications, 9 (2017), 545-562.  doi: 10.1007/s12095-016-0198-1.  Google Scholar

[23]

Y. Wang and J. Gao, MacDonald codes over the ring $\mathbb{F}_p+ v\mathbb{F}_p+v^2\mathbb{F}_p$, Computational and Applied Mathematics, 38 (2019), 169. doi: 10.1007/s40314-019-0937-y.  Google Scholar

[24]

S. Yang and Z. Yao, Complete weight enumerators of a family of three-weight linear codes, Designs, Codes and Cryptography, 82 (2017), 663-674.  doi: 10.1007/s10623-016-0191-x.  Google Scholar

[1]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[2]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[3]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[4]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[5]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[6]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[7]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[8]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[9]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[10]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[11]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[12]

Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287

[13]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[14]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[15]

Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059

[16]

Yeow Meng Chee, Xiande Zhang, Hui Zhang. Infinite families of optimal splitting authentication codes secure against spoofing attacks of higher order. Advances in Mathematics of Communications, 2011, 5 (1) : 59-68. doi: 10.3934/amc.2011.5.59

[17]

Anna-Lena Horlemann-Trautmann, Alessandro Neri. A complete classification of partial MDS (maximally recoverable) codes with one global parity. Advances in Mathematics of Communications, 2020, 14 (1) : 69-88. doi: 10.3934/amc.2020006

[18]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[19]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[20]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (23)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]