-
Previous Article
Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem
- AMC Home
- This Issue
-
Next Article
New quantum codes from constacyclic codes over the ring $ R_{k,m} $
Complete weight enumerator of torsion codes
School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255000, China |
In this paper, we introduce two classes of MacDonald codes over the finite non-chain ring $ \mathbb{F}_p+v\mathbb{F}_p+v^2\mathbb{F}_p $ and their torsion codes which are linear codes over $ \mathbb{F}_p $, where $ p $ is an odd prime and $ v^3 = v $. We give the complete weight enumerator of two classes of torsion codes. As an application, systematic authentication codes are obtained by these torsion codes.
References:
[1] |
S. Bae, C. Li and Q. Yue,
On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 60 (2015), 2275-2287.
doi: 10.1016/j.disc.2015.05.016. |
[2] |
I. F. Blake and K. Kith,
On the complete weight enumerator of Reed-Solomon codes, SIAM Journal on Discrete Mathematics, 4 (1991), 164-171.
doi: 10.1137/0404016. |
[3] |
Y. Cengellenmis and M. Department, MacDonald codes over the ring $\mathbb{F}_3+ v\mathbb{F}_3$, IUG Journal of Natural and Engineering Studues, 20 (2012), 109-112. Google Scholar |
[4] |
C. Colbourn and M. Gupta, On quaternary MacDonald codes, Proceedings ITCC 2003, International Conference on Information Technology: Coding and Computing, 5 (2003), 212-215. Google Scholar |
[5] |
A. Dertli and Y. Cengellenmis,
Macdonald codes over the ring $\mathbb{F}_2+v\mathbb{F}_2$, International Journal of Algebra, 5 (2011), 985-991.
|
[6] |
L. Diao, J. Gao and J. Lu, On $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes, Advances in Mathematics of Communications, 14, (2020), 555–572.
doi: 10.3934/amc.2018038. |
[7] |
C. Ding and J. Yin,
Algebraic constructions of constant composition codes, International Conference on Information Technology, 51 (2005), 1585-1589.
doi: 10.1109/TIT.2005.844087. |
[8] |
C. Ding and X. Wang,
A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[9] |
C. Ding, T. Helleseth, T. Kløve and X. Wang,
A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.
doi: 10.1109/TIT.2007.896872. |
[10] |
T. Helleseth and A. Kholosha,
Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854. |
[11] |
X. Hou and J. Gao, $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes are asymptotically good, Journal of Applied Mathematics and Computing, (2020), https://doi.org/10.1007/s12190-020-01466-w. Google Scholar |
[12] |
A. Kuzmin and A. Nechaev,
Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discrete Applied Mathematics, 111 (2001), 117-137.
doi: 10.1016/S0166-218X(00)00348-6. |
[13] |
C. Li, Q. Yue and F.-W. Fu,
Complete weight enumerators of some cyclic codes, Designs, Codes and Crytography, 80 (2016), 295-315.
doi: 10.1007/s10623-015-0091-5. |
[14] |
C. Li, S. Bae, J. Ahn, S. Yang and Z. Yao,
Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.
doi: 10.1007/s10623-015-0136-9. |
[15] |
J. Luo and T. Helleset,
Constant composition codes as subcodes of cyclic codes, IEEE Transactions on Information Theory, 57 (2011), 7482-7488.
doi: 10.1109/TIT.2011.2161631. |
[16] |
J. E. MacDonald,
Design methods for maximum minimum-distance error-correcting codes, IBM Journal of Research and Development, 4 (1960), 43-57.
doi: 10.1147/rd.41.0043. |
[17] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977. |
[18] |
A. M. Patel,
Maximal $q$-ary linear codes with large minimum distance, IEEE Transactions on Information Theory, 21 (1975), 106-110.
doi: 10.1109/tit.1975.1055315. |
[19] |
R. S. Rees and D. R. Stinson,
Combinatorial characterizations of authentication codes Ⅱ, Designs, Codes and Cryptography, 2 (1992), 175-187.
doi: 10.1007/BF00124896. |
[20] |
G. J. Simmons, Authentication theory coding theory, International Cryptology Conference, (1985), 411–4317. Google Scholar |
[21] |
X. Wang, J. Gao and F.-W. Fu,
Secret sharing schemes from linear codes over $\mathbb{F}_p+ v\mathbb{F}_p$, International Journal of Foundations of Computer Science, 27 (2016), 595-605.
doi: 10.1142/S0129054116500180. |
[22] |
X. Wang, J. Gao and F.-W. Fu,
Complete weight enumerators of two classes of linear codes, Cryptography and Communications, 9 (2017), 545-562.
doi: 10.1007/s12095-016-0198-1. |
[23] |
Y. Wang and J. Gao, MacDonald codes over the ring $\mathbb{F}_p+ v\mathbb{F}_p+v^2\mathbb{F}_p$, Computational and Applied Mathematics, 38 (2019), 169.
doi: 10.1007/s40314-019-0937-y. |
[24] |
S. Yang and Z. Yao,
Complete weight enumerators of a family of three-weight linear codes, Designs, Codes and Cryptography, 82 (2017), 663-674.
doi: 10.1007/s10623-016-0191-x. |
show all references
References:
[1] |
S. Bae, C. Li and Q. Yue,
On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 60 (2015), 2275-2287.
doi: 10.1016/j.disc.2015.05.016. |
[2] |
I. F. Blake and K. Kith,
On the complete weight enumerator of Reed-Solomon codes, SIAM Journal on Discrete Mathematics, 4 (1991), 164-171.
doi: 10.1137/0404016. |
[3] |
Y. Cengellenmis and M. Department, MacDonald codes over the ring $\mathbb{F}_3+ v\mathbb{F}_3$, IUG Journal of Natural and Engineering Studues, 20 (2012), 109-112. Google Scholar |
[4] |
C. Colbourn and M. Gupta, On quaternary MacDonald codes, Proceedings ITCC 2003, International Conference on Information Technology: Coding and Computing, 5 (2003), 212-215. Google Scholar |
[5] |
A. Dertli and Y. Cengellenmis,
Macdonald codes over the ring $\mathbb{F}_2+v\mathbb{F}_2$, International Journal of Algebra, 5 (2011), 985-991.
|
[6] |
L. Diao, J. Gao and J. Lu, On $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes, Advances in Mathematics of Communications, 14, (2020), 555–572.
doi: 10.3934/amc.2018038. |
[7] |
C. Ding and J. Yin,
Algebraic constructions of constant composition codes, International Conference on Information Technology, 51 (2005), 1585-1589.
doi: 10.1109/TIT.2005.844087. |
[8] |
C. Ding and X. Wang,
A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[9] |
C. Ding, T. Helleseth, T. Kløve and X. Wang,
A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.
doi: 10.1109/TIT.2007.896872. |
[10] |
T. Helleseth and A. Kholosha,
Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854. |
[11] |
X. Hou and J. Gao, $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes are asymptotically good, Journal of Applied Mathematics and Computing, (2020), https://doi.org/10.1007/s12190-020-01466-w. Google Scholar |
[12] |
A. Kuzmin and A. Nechaev,
Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discrete Applied Mathematics, 111 (2001), 117-137.
doi: 10.1016/S0166-218X(00)00348-6. |
[13] |
C. Li, Q. Yue and F.-W. Fu,
Complete weight enumerators of some cyclic codes, Designs, Codes and Crytography, 80 (2016), 295-315.
doi: 10.1007/s10623-015-0091-5. |
[14] |
C. Li, S. Bae, J. Ahn, S. Yang and Z. Yao,
Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.
doi: 10.1007/s10623-015-0136-9. |
[15] |
J. Luo and T. Helleset,
Constant composition codes as subcodes of cyclic codes, IEEE Transactions on Information Theory, 57 (2011), 7482-7488.
doi: 10.1109/TIT.2011.2161631. |
[16] |
J. E. MacDonald,
Design methods for maximum minimum-distance error-correcting codes, IBM Journal of Research and Development, 4 (1960), 43-57.
doi: 10.1147/rd.41.0043. |
[17] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977. |
[18] |
A. M. Patel,
Maximal $q$-ary linear codes with large minimum distance, IEEE Transactions on Information Theory, 21 (1975), 106-110.
doi: 10.1109/tit.1975.1055315. |
[19] |
R. S. Rees and D. R. Stinson,
Combinatorial characterizations of authentication codes Ⅱ, Designs, Codes and Cryptography, 2 (1992), 175-187.
doi: 10.1007/BF00124896. |
[20] |
G. J. Simmons, Authentication theory coding theory, International Cryptology Conference, (1985), 411–4317. Google Scholar |
[21] |
X. Wang, J. Gao and F.-W. Fu,
Secret sharing schemes from linear codes over $\mathbb{F}_p+ v\mathbb{F}_p$, International Journal of Foundations of Computer Science, 27 (2016), 595-605.
doi: 10.1142/S0129054116500180. |
[22] |
X. Wang, J. Gao and F.-W. Fu,
Complete weight enumerators of two classes of linear codes, Cryptography and Communications, 9 (2017), 545-562.
doi: 10.1007/s12095-016-0198-1. |
[23] |
Y. Wang and J. Gao, MacDonald codes over the ring $\mathbb{F}_p+ v\mathbb{F}_p+v^2\mathbb{F}_p$, Computational and Applied Mathematics, 38 (2019), 169.
doi: 10.1007/s40314-019-0937-y. |
[24] |
S. Yang and Z. Yao,
Complete weight enumerators of a family of three-weight linear codes, Designs, Codes and Cryptography, 82 (2017), 663-674.
doi: 10.1007/s10623-016-0191-x. |
[1] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[2] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[3] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[4] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[5] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[6] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[7] |
Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053 |
[8] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[9] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[10] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[11] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[12] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
[13] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[14] |
Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020122 |
[15] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020127 |
[16] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[17] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[18] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[19] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[20] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
2019 Impact Factor: 0.734
Tools
Article outline
[Back to Top]