[1]
|
S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
doi: 10.1017/CBO9780511804090.
|
[2]
|
S. Boztas and P.V. Kumar, Binary sequences with Gold-like correlation but larger linear span, IEEE Trans. Inf. Theory, 40 (1994), 532-537.
doi: 10.1109/18.312181.
|
[3]
|
N. G. de Bruijn, A combinatorial problem, Proc. Koninklijke Nederlandse Akademie v. Wetenschappen, 49 (1946), 758-764.
|
[4]
|
A. Canteaut, Analysis and Design of Symmetric Ciphers, Habilitation for directing Theses, University of Paris 6, 2006. Available from: https://www.rocq.inria.fr/secret/Anne.Canteaut/canteaut-hdr.pdf.
|
[5]
|
C. Carlet, Boolean functions for cryptography and error correcting codes, Chapter of the monography Boolean models and methods in mathematics, computer science, and engineering, Cambridge University Press, (2010), 257–397.
|
[6]
|
A. H. Chan, R. A. Games and E. L. Key, On the complexities of de Bruijn sequences, Journal of Combinatorial Theory, Series A, 33 (1982), 233-246.
doi: 10.1016/0097-3165(82)90038-3.
|
[7]
|
A. Chang, P. Gaal, S. W. Golomb, G. Gong, T. Helleseth and P. V. Kumar, On a conjectured ideal autocorrelation sequence and a related triple-error correcting cyclic code, IEEE Trans. Inf. Theory, 46 (2000), 680-687.
doi: 10.1109/18.825842.
|
[8]
|
T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009.
|
[9]
|
National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal information processing standards publication, FIPS PUB 186-2, Reaffirmed, 2000.,
|
[10]
|
J. F. Dillon, Multiplicative difference sets via additive characters, Designs, Codes and Cryptography, 17 (1999), 225-235.
doi: 10.1023/A:1026435428030.
|
[11]
|
J. F. Dillon and H. Dobbertin, New cyclic difference sets with singer parameters, Finite Fields and Their Applications, 10 (2004), 342-389.
doi: 10.1016/j.ffa.2003.09.003.
|
[12]
|
L. Ding, C. Jin, J. Guan and Q. Wang, Cryptanalysis of lightweight WG-8 stream cipher, IEEE Trans. Inf. Forensics and Security, 9 (2014), 645-652.
doi: 10.1109/TIFS.2014.2307202.
|
[13]
|
L. Ding, C. Jin, J. Guan, S. Zhang, T. Cui, D. Han and W. Zhao, Cryptanalysis of WG family of stream ciphers, Computer Journal, 58 (2015), 2677-2685.
doi: 10.1093/comjnl/bxv024.
|
[14]
|
The eStream project, (2008). Available from: http://www.ecrypt.eu.org/stream/project.html.
|
[15]
|
X. Fan, K. Mandal and G. Gong, WG-8: A lightweight stream cipher for resource-constrained smart devices, 9th International Conference on Quality, Reliability, Security and Robustness in Heterogeneous Networks, Springer Berlin, (2013), 617–632.
doi: 10.1007/978-3-642-37949-9_54.
|
[16]
|
X. Fan, N. Zidaric, M. Aagaard and G. Gong, Efficient hardware implementation of the stream cipher WG-16 with composite field arithmetic, The 2013 ACM Workshop on Trustworthy Embedded Devices (TrustED'13), ACM Press, (2013), 21–34.
doi: 10.1145/2517300.2517305.
|
[17]
|
R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inf. Theory, 14 (1968), 154-156.
doi: 10.1109/TIT.1968.1054106.
|
[18]
|
J. Dj Golić, On the security of nonlinear filter generators, in 1996 Proceedings of Fast Software Encryption, Springer, Berlin, Heidelberg, (1996), 173–188.
|
[19]
|
S. W. Golomb, On the classification of balanced binary sequences of period $2^n-1$, IEEE Trans. Inf. Theory, 26 (1980), 730-732.
doi: 10.1109/TIT.1980.1056265.
|
[20]
|
S. W. Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, CA, (1981).
|
[21]
|
S. W. Golomb and G. Gong, Signal Design for Good Correlation: For wireless Communication, Cryptography and Radar, Cambridge University Press, New York, 2005.
doi: 10.1017/CBO9780511546907.
|
[22]
|
G. Gong, P. Gaal and S. W. Golomb, A suspected infinity class of cyclic Hadamard difference sets, Proceedings of 1997 IEEE Information Theory Workshop, Longyearbyen, Syalbard, Norway, (1997).
|
[23]
|
G. Gong and A. Youssef, Cryptographic properties of the Welch-Gong transformation sequence generators, IEEE Trans. Inf. Theory, 48 (2002), 2837-2846.
doi: 10.1109/TIT.2002.804043.
|
[24]
|
B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canadian Journal of Mathematics, 14 (1962), 614-625.
doi: 10.4153/CJM-1962-052-2.
|
[25]
|
M. Joseph, G. Sekar and R. Balasubramanian, Distinguishing attacks on (ultra-)lightweight WG ciphers, in 5th International Workshop on Lightweight Cryptography for Security and Privacy, LightSec 2016, Springer International Publishing, (2017), 45–59.
doi: 10.1007/978-3-319-55714-4_4.
|
[26]
|
K. Mandal and G. Gong, Cryptographically strong de Bruijn sequences with large periods., in Selected Areas in Cryptography, SAC 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7707 (2012), 104–118.
|
[27]
|
K. Mandal and G. Gong, Feedback reconstruction and implementations of pseudorandom number generators from composited de Bruijn sequences, IEEE Trans. Computers, 65 (2016), 2725-2738.
doi: 10.1109/TC.2015.2506557.
|
[28]
|
K. Mandal, G. Gong, X. Fan and M. Aagaard, Optimal parameters for the WG stream cipher family, Cryptography and Communications, 6 (2014), 117-135.
|
[29]
|
K. Mandal, B. Yang, G. Gong and M. Aagaard, On ideal $t$-tuple distribution of filtering de Bruijn sequence generators, Cryptography and Communications, 10 (2018), 629-641.
doi: 10.1007/s12095-017-0248-3.
|
[30]
|
J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.
doi: 10.1109/tit.1969.1054260.
|
[31]
|
Y. Nawaz and G. Gong, WG: A family of stream ciphers with designed randomness properties, Information Sciences, 178 (2008), 1903-1916.
doi: 10.1016/j.ins.2007.12.002.
|
[32]
|
Y. Nawaz and G. Gong, The WG stream cipher, (2005). Available from: http://www.ecrypt.eu.org/stream/p2ciphers/wg/wg_p2.pdf.,
|
[33]
|
J.-S. No, S. W. Golomb, G. Gong, H. K. Lee and P. Gaal, Binary pseudorandom sequences of period $2^n-1$ with ideal autocorrelation, IEEE Trans. Inform. Theory, 44 (1998), 814-817.
doi: 10.1109/18.661528.
|
[34]
|
M. A. Orumiehchiha, J. Pieprzyk and R. Steinfeld, Cryptanalysis of WG-7: A lightweight stream cipher, Cryptography Communications, 4 (2012), 277-285.
doi: 10.1007/s12095-012-0070-x.
|
[35]
|
H. El-Razouk, A. Reyhani-Masoleh and G. Gong, New implementations of the WG stream cipher, IEEE Trans. on VLSI, 22 (2014), 1865-1878.
doi: 10.1109/TVLSI.2013.2280092.
|
[36]
|
S. RØnjom, Improving algebraic attacks on stream ciphers based on linear feedback shift register over $\mathbb{F}_{2^k}$, Designs Codes Cryptography, 82 (2017), 27-41.
doi: 10.1007/s10623-016-0212-9.
|
[37]
|
R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986.
doi: 10.1007/978-3-642-82865-2.
|
[38]
|
T. Siegenthaler, R. Forré and A. W. Kleiner, Generation of binary sequences with controllable complexity and ideal $r$-tupel distribution, in Advances in Cryptology–EUROCRYPT 87, Lecture Notes in Comput. Sci, 304 (1987), 15–23.
doi: 10.1007/3-540-39118-5_3.
|
[39]
|
N. Y. Yu and G. Gong, Crosscorrelation properties of binary sequences with ideal two-level autocorrelation, in Proceedings of the 4th International Conference on Sequences and Their Applications (SETA'06), Lecture Notes in Comput. Sci, Springer, Berlin, Heidelberg, 4086 (2006), 104–118.
doi: 10.1007/11863854_9.
|
[40]
|
N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636.
doi: 10.1109/TIT.2006.871062.
|
[41]
|
S. V. Smyshlyaev, Perfectly balanced Boolean functions and Golić conjecture, Journal of Cryptology, 25 (2012), 464-483.
doi: 10.1007/s00145-011-9100-7.
|
[42]
|
G. Yang, X. Fan, M. Aagaard and G. Gong, Design space exploration of the lightweight stream cipher WG-8 for FPGAs and ASICs, Proceedings of the Workshop on Embedded Systems Security, (2013), 1–10.
doi: 10.1145/2527317.2527325.
|
[43]
|
B. Yang, K. Mandal, M. D. Aagaard and G. Gong, Efficient composited de Bruijn sequence generators, IEEE Trans. on Computers, 66 (2017), 1354-1368.
doi: 10.1109/TC.2017.2676763.
|