# American Institute of Mathematical Sciences

doi: 10.3934/amc.2020125
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## On ideal $t$-tuple distribution of orthogonal functions in filtering de bruijn generators

 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, CANADA

* Corresponding author

Received  June 2019 Revised  November 2020 Early access December 2020

Uniformity in binary tuples of various lengths in a pseudorandom sequence is an important randomness property. We consider ideal $t$-tuple distribution of a filtering de Bruijn generator consisting of a de Bruijn sequence of period $2^n$ and a filtering function in $m$ variables. We restrict ourselves to the family of orthogonal functions, that correspond to binary sequences with ideal 2-level autocorrelation, used as filtering functions. After the twenty years of discovery of Welch-Gong (WG) transformations, there are no much significant results on randomness of WG transformation sequences. In this article, we present new results on uniformity of the WG transform of orthogonal functions on de Bruijn sequences. First, we introduce a new property, called invariant under the WG transform, of Boolean functions. We have found that there are only two classes of orthogonal functions whose WG transformations preserve $t$-tuple uniformity in output sequences, up to $t = (n-m+1)$. The conjecture of Mandal et al. in [29] about the ideal tuple distribution on the WG transformation is proved. It is also shown that the Gold functions and quadratic functions can guarantee $(n-m+1)$-tuple distributions. A connection between the ideal tuple distribution and the invariance under WG transform property is established.

Citation: Kalikinkar Mandal, Guang Gong. On ideal $t$-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, doi: 10.3934/amc.2020125
##### References:
 [1] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511804090. [2] S. Boztas and P.V. Kumar, Binary sequences with Gold-like correlation but larger linear span, IEEE Trans. Inf. Theory, 40 (1994), 532-537.  doi: 10.1109/18.312181. [3] N. G. de Bruijn, A combinatorial problem, Proc. Koninklijke Nederlandse Akademie v. Wetenschappen, 49 (1946), 758-764. [4] A. Canteaut, Analysis and Design of Symmetric Ciphers, Habilitation for directing Theses, University of Paris 6, 2006. Available from: https://www.rocq.inria.fr/secret/Anne.Canteaut/canteaut-hdr.pdf. [5] C. Carlet, Boolean functions for cryptography and error correcting codes, Chapter of the monography Boolean models and methods in mathematics, computer science, and engineering, Cambridge University Press, (2010), 257–397. [6] A. H. Chan, R. A. Games and E. L. Key, On the complexities of de Bruijn sequences, Journal of Combinatorial Theory, Series A, 33 (1982), 233-246.  doi: 10.1016/0097-3165(82)90038-3. [7] A. Chang, P. Gaal, S. W. Golomb, G. Gong, T. Helleseth and P. V. Kumar, On a conjectured ideal autocorrelation sequence and a related triple-error correcting cyclic code, IEEE Trans. Inf. Theory, 46 (2000), 680-687.  doi: 10.1109/18.825842. [8] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009. [9] National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal information processing standards publication, FIPS PUB 186-2, Reaffirmed, 2000., [10] J. F. Dillon, Multiplicative difference sets via additive characters, Designs, Codes and Cryptography, 17 (1999), 225-235.  doi: 10.1023/A:1026435428030. [11] J. F. Dillon and H. Dobbertin, New cyclic difference sets with singer parameters, Finite Fields and Their Applications, 10 (2004), 342-389.  doi: 10.1016/j.ffa.2003.09.003. [12] L. Ding, C. Jin, J. Guan and Q. Wang, Cryptanalysis of lightweight WG-8 stream cipher, IEEE Trans. Inf. Forensics and Security, 9 (2014), 645-652.  doi: 10.1109/TIFS.2014.2307202. [13] L. Ding, C. Jin, J. Guan, S. Zhang, T. Cui, D. Han and W. Zhao, Cryptanalysis of WG family of stream ciphers, Computer Journal, 58 (2015), 2677-2685.  doi: 10.1093/comjnl/bxv024. [14] The eStream project, (2008). Available from: http://www.ecrypt.eu.org/stream/project.html. [15] X. Fan, K. Mandal and G. Gong, WG-8: A lightweight stream cipher for resource-constrained smart devices, 9th International Conference on Quality, Reliability, Security and Robustness in Heterogeneous Networks, Springer Berlin, (2013), 617–632. doi: 10.1007/978-3-642-37949-9_54. [16] X. Fan, N. Zidaric, M. Aagaard and G. Gong, Efficient hardware implementation of the stream cipher WG-16 with composite field arithmetic, The 2013 ACM Workshop on Trustworthy Embedded Devices (TrustED'13), ACM Press, (2013), 21–34. doi: 10.1145/2517300.2517305. [17] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inf. Theory, 14 (1968), 154-156.  doi: 10.1109/TIT.1968.1054106. [18] J. Dj Golić, On the security of nonlinear filter generators, in 1996 Proceedings of Fast Software Encryption, Springer, Berlin, Heidelberg, (1996), 173–188. [19] S. W. Golomb, On the classification of balanced binary sequences of period $2^n-1$, IEEE Trans. Inf. Theory, 26 (1980), 730-732.  doi: 10.1109/TIT.1980.1056265. [20] S. W. Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, CA, (1981). [21] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For wireless Communication, Cryptography and Radar, Cambridge University Press, New York, 2005.  doi: 10.1017/CBO9780511546907. [22] G. Gong, P. Gaal and S. W. Golomb, A suspected infinity class of cyclic Hadamard difference sets, Proceedings of 1997 IEEE Information Theory Workshop, Longyearbyen, Syalbard, Norway, (1997). [23] G. Gong and A. Youssef, Cryptographic properties of the Welch-Gong transformation sequence generators, IEEE Trans. Inf. Theory, 48 (2002), 2837-2846.  doi: 10.1109/TIT.2002.804043. [24] B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canadian Journal of Mathematics, 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2. [25] M. Joseph, G. Sekar and R. Balasubramanian, Distinguishing attacks on (ultra-)lightweight WG ciphers, in 5th International Workshop on Lightweight Cryptography for Security and Privacy, LightSec 2016, Springer International Publishing, (2017), 45–59. doi: 10.1007/978-3-319-55714-4_4. [26] K. Mandal and G. Gong, Cryptographically strong de Bruijn sequences with large periods., in Selected Areas in Cryptography, SAC 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7707 (2012), 104–118. [27] K. Mandal and G. Gong, Feedback reconstruction and implementations of pseudorandom number generators from composited de Bruijn sequences, IEEE Trans. Computers, 65 (2016), 2725-2738.  doi: 10.1109/TC.2015.2506557. [28] K. Mandal, G. Gong, X. Fan and M. Aagaard, Optimal parameters for the WG stream cipher family, Cryptography and Communications, 6 (2014), 117-135. [29] K. Mandal, B. Yang, G. Gong and M. Aagaard, On ideal $t$-tuple distribution of filtering de Bruijn sequence generators, Cryptography and Communications, 10 (2018), 629-641.  doi: 10.1007/s12095-017-0248-3. [30] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.  doi: 10.1109/tit.1969.1054260. [31] Y. Nawaz and G. Gong, WG: A family of stream ciphers with designed randomness properties, Information Sciences, 178 (2008), 1903-1916.  doi: 10.1016/j.ins.2007.12.002. [32] Y. Nawaz and G. Gong, The WG stream cipher, (2005). Available from: http://www.ecrypt.eu.org/stream/p2ciphers/wg/wg_p2.pdf., [33] J.-S. No, S. W. Golomb, G. Gong, H. K. Lee and P. Gaal, Binary pseudorandom sequences of period $2^n-1$ with ideal autocorrelation, IEEE Trans. Inform. Theory, 44 (1998), 814-817.  doi: 10.1109/18.661528. [34] M. A. Orumiehchiha, J. Pieprzyk and R. Steinfeld, Cryptanalysis of WG-7: A lightweight stream cipher, Cryptography Communications, 4 (2012), 277-285.  doi: 10.1007/s12095-012-0070-x. [35] H. El-Razouk, A. Reyhani-Masoleh and G. Gong, New implementations of the WG stream cipher, IEEE Trans. on VLSI, 22 (2014), 1865-1878.  doi: 10.1109/TVLSI.2013.2280092. [36] S. RØnjom, Improving algebraic attacks on stream ciphers based on linear feedback shift register over $\mathbb{F}_{2^k}$, Designs Codes Cryptography, 82 (2017), 27-41.  doi: 10.1007/s10623-016-0212-9. [37] R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986. doi: 10.1007/978-3-642-82865-2. [38] T. Siegenthaler, R. Forré and A. W. Kleiner, Generation of binary sequences with controllable complexity and ideal $r$-tupel distribution, in Advances in Cryptology–EUROCRYPT 87, Lecture Notes in Comput. Sci, 304 (1987), 15–23. doi: 10.1007/3-540-39118-5_3. [39] N. Y. Yu and G. Gong, Crosscorrelation properties of binary sequences with ideal two-level autocorrelation, in Proceedings of the 4th International Conference on Sequences and Their Applications (SETA'06), Lecture Notes in Comput. Sci, Springer, Berlin, Heidelberg, 4086 (2006), 104–118. doi: 10.1007/11863854_9. [40] N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636.  doi: 10.1109/TIT.2006.871062. [41] S. V. Smyshlyaev, Perfectly balanced Boolean functions and Golić conjecture, Journal of Cryptology, 25 (2012), 464-483.  doi: 10.1007/s00145-011-9100-7. [42] G. Yang, X. Fan, M. Aagaard and G. Gong, Design space exploration of the lightweight stream cipher WG-8 for FPGAs and ASICs, Proceedings of the Workshop on Embedded Systems Security, (2013), 1–10. doi: 10.1145/2527317.2527325. [43] B. Yang, K. Mandal, M. D. Aagaard and G. Gong, Efficient composited de Bruijn sequence generators, IEEE Trans. on Computers, 66 (2017), 1354-1368.  doi: 10.1109/TC.2017.2676763.

show all references

##### References:
 [1] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511804090. [2] S. Boztas and P.V. Kumar, Binary sequences with Gold-like correlation but larger linear span, IEEE Trans. Inf. Theory, 40 (1994), 532-537.  doi: 10.1109/18.312181. [3] N. G. de Bruijn, A combinatorial problem, Proc. Koninklijke Nederlandse Akademie v. Wetenschappen, 49 (1946), 758-764. [4] A. Canteaut, Analysis and Design of Symmetric Ciphers, Habilitation for directing Theses, University of Paris 6, 2006. Available from: https://www.rocq.inria.fr/secret/Anne.Canteaut/canteaut-hdr.pdf. [5] C. Carlet, Boolean functions for cryptography and error correcting codes, Chapter of the monography Boolean models and methods in mathematics, computer science, and engineering, Cambridge University Press, (2010), 257–397. [6] A. H. Chan, R. A. Games and E. L. Key, On the complexities of de Bruijn sequences, Journal of Combinatorial Theory, Series A, 33 (1982), 233-246.  doi: 10.1016/0097-3165(82)90038-3. [7] A. Chang, P. Gaal, S. W. Golomb, G. Gong, T. Helleseth and P. V. Kumar, On a conjectured ideal autocorrelation sequence and a related triple-error correcting cyclic code, IEEE Trans. Inf. Theory, 46 (2000), 680-687.  doi: 10.1109/18.825842. [8] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009. [9] National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal information processing standards publication, FIPS PUB 186-2, Reaffirmed, 2000., [10] J. F. Dillon, Multiplicative difference sets via additive characters, Designs, Codes and Cryptography, 17 (1999), 225-235.  doi: 10.1023/A:1026435428030. [11] J. F. Dillon and H. Dobbertin, New cyclic difference sets with singer parameters, Finite Fields and Their Applications, 10 (2004), 342-389.  doi: 10.1016/j.ffa.2003.09.003. [12] L. Ding, C. Jin, J. Guan and Q. Wang, Cryptanalysis of lightweight WG-8 stream cipher, IEEE Trans. Inf. Forensics and Security, 9 (2014), 645-652.  doi: 10.1109/TIFS.2014.2307202. [13] L. Ding, C. Jin, J. Guan, S. Zhang, T. Cui, D. Han and W. Zhao, Cryptanalysis of WG family of stream ciphers, Computer Journal, 58 (2015), 2677-2685.  doi: 10.1093/comjnl/bxv024. [14] The eStream project, (2008). Available from: http://www.ecrypt.eu.org/stream/project.html. [15] X. Fan, K. Mandal and G. Gong, WG-8: A lightweight stream cipher for resource-constrained smart devices, 9th International Conference on Quality, Reliability, Security and Robustness in Heterogeneous Networks, Springer Berlin, (2013), 617–632. doi: 10.1007/978-3-642-37949-9_54. [16] X. Fan, N. Zidaric, M. Aagaard and G. Gong, Efficient hardware implementation of the stream cipher WG-16 with composite field arithmetic, The 2013 ACM Workshop on Trustworthy Embedded Devices (TrustED'13), ACM Press, (2013), 21–34. doi: 10.1145/2517300.2517305. [17] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inf. Theory, 14 (1968), 154-156.  doi: 10.1109/TIT.1968.1054106. [18] J. Dj Golić, On the security of nonlinear filter generators, in 1996 Proceedings of Fast Software Encryption, Springer, Berlin, Heidelberg, (1996), 173–188. [19] S. W. Golomb, On the classification of balanced binary sequences of period $2^n-1$, IEEE Trans. Inf. Theory, 26 (1980), 730-732.  doi: 10.1109/TIT.1980.1056265. [20] S. W. Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, CA, (1981). [21] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For wireless Communication, Cryptography and Radar, Cambridge University Press, New York, 2005.  doi: 10.1017/CBO9780511546907. [22] G. Gong, P. Gaal and S. W. Golomb, A suspected infinity class of cyclic Hadamard difference sets, Proceedings of 1997 IEEE Information Theory Workshop, Longyearbyen, Syalbard, Norway, (1997). [23] G. Gong and A. Youssef, Cryptographic properties of the Welch-Gong transformation sequence generators, IEEE Trans. Inf. Theory, 48 (2002), 2837-2846.  doi: 10.1109/TIT.2002.804043. [24] B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canadian Journal of Mathematics, 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2. [25] M. Joseph, G. Sekar and R. Balasubramanian, Distinguishing attacks on (ultra-)lightweight WG ciphers, in 5th International Workshop on Lightweight Cryptography for Security and Privacy, LightSec 2016, Springer International Publishing, (2017), 45–59. doi: 10.1007/978-3-319-55714-4_4. [26] K. Mandal and G. Gong, Cryptographically strong de Bruijn sequences with large periods., in Selected Areas in Cryptography, SAC 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7707 (2012), 104–118. [27] K. Mandal and G. Gong, Feedback reconstruction and implementations of pseudorandom number generators from composited de Bruijn sequences, IEEE Trans. Computers, 65 (2016), 2725-2738.  doi: 10.1109/TC.2015.2506557. [28] K. Mandal, G. Gong, X. Fan and M. Aagaard, Optimal parameters for the WG stream cipher family, Cryptography and Communications, 6 (2014), 117-135. [29] K. Mandal, B. Yang, G. Gong and M. Aagaard, On ideal $t$-tuple distribution of filtering de Bruijn sequence generators, Cryptography and Communications, 10 (2018), 629-641.  doi: 10.1007/s12095-017-0248-3. [30] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.  doi: 10.1109/tit.1969.1054260. [31] Y. Nawaz and G. Gong, WG: A family of stream ciphers with designed randomness properties, Information Sciences, 178 (2008), 1903-1916.  doi: 10.1016/j.ins.2007.12.002. [32] Y. Nawaz and G. Gong, The WG stream cipher, (2005). Available from: http://www.ecrypt.eu.org/stream/p2ciphers/wg/wg_p2.pdf., [33] J.-S. No, S. W. Golomb, G. Gong, H. K. Lee and P. Gaal, Binary pseudorandom sequences of period $2^n-1$ with ideal autocorrelation, IEEE Trans. Inform. Theory, 44 (1998), 814-817.  doi: 10.1109/18.661528. [34] M. A. Orumiehchiha, J. Pieprzyk and R. Steinfeld, Cryptanalysis of WG-7: A lightweight stream cipher, Cryptography Communications, 4 (2012), 277-285.  doi: 10.1007/s12095-012-0070-x. [35] H. El-Razouk, A. Reyhani-Masoleh and G. Gong, New implementations of the WG stream cipher, IEEE Trans. on VLSI, 22 (2014), 1865-1878.  doi: 10.1109/TVLSI.2013.2280092. [36] S. RØnjom, Improving algebraic attacks on stream ciphers based on linear feedback shift register over $\mathbb{F}_{2^k}$, Designs Codes Cryptography, 82 (2017), 27-41.  doi: 10.1007/s10623-016-0212-9. [37] R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986. doi: 10.1007/978-3-642-82865-2. [38] T. Siegenthaler, R. Forré and A. W. Kleiner, Generation of binary sequences with controllable complexity and ideal $r$-tupel distribution, in Advances in Cryptology–EUROCRYPT 87, Lecture Notes in Comput. Sci, 304 (1987), 15–23. doi: 10.1007/3-540-39118-5_3. [39] N. Y. Yu and G. Gong, Crosscorrelation properties of binary sequences with ideal two-level autocorrelation, in Proceedings of the 4th International Conference on Sequences and Their Applications (SETA'06), Lecture Notes in Comput. Sci, Springer, Berlin, Heidelberg, 4086 (2006), 104–118. doi: 10.1007/11863854_9. [40] N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636.  doi: 10.1109/TIT.2006.871062. [41] S. V. Smyshlyaev, Perfectly balanced Boolean functions and Golić conjecture, Journal of Cryptology, 25 (2012), 464-483.  doi: 10.1007/s00145-011-9100-7. [42] G. Yang, X. Fan, M. Aagaard and G. Gong, Design space exploration of the lightweight stream cipher WG-8 for FPGAs and ASICs, Proceedings of the Workshop on Embedded Systems Security, (2013), 1–10. doi: 10.1145/2527317.2527325. [43] B. Yang, K. Mandal, M. D. Aagaard and G. Gong, Efficient composited de Bruijn sequence generators, IEEE Trans. on Computers, 66 (2017), 1354-1368.  doi: 10.1109/TC.2017.2676763.
Block diagram of a filtering de Bruijn generator (FDBG)
Relations among Hadamard Transform, WG-inv, $x_0$-independence and ideal tuple distribution. $g(\cdot)$ is independent of $x_0$. $\leftrightarrow$ denotes if and only if condition, $\rightarrow$ denotes if condition and $n$ is the NLFSR length
A summary of the Hadamard transform values of three-term functions
 Functions Hadamard Transform values Ref. $w(x) = T3(x^{2^k+1}) = {\rm Tr}(x + x^r + x^{r^2})$ $3$-valued [11] $g(x) = T3(x^{2^k-1}) = {\rm Tr}(x + x^{q_2} + x^{q_2^2})$ at most $5$-valued [39] $WG_{w}(x) = {\rm Tr}(x + (x+1)^{r} + (x+1)^{r^2})$ $3$-valued Lemma 3.7 $WG_{g}(x) = {\rm Tr}(x + (x+1)^{q_2} + (x+1)^{q_2^2})$ at most $5$-valued Lemma 3.7 $WG_{T3}(x^d) = {\rm Tr}(x^d + (x^d+1)^{q1} + (x^d+1)^{q_2})$ at most $5$-valued Theorem 3.8
 Functions Hadamard Transform values Ref. $w(x) = T3(x^{2^k+1}) = {\rm Tr}(x + x^r + x^{r^2})$ $3$-valued [11] $g(x) = T3(x^{2^k-1}) = {\rm Tr}(x + x^{q_2} + x^{q_2^2})$ at most $5$-valued [39] $WG_{w}(x) = {\rm Tr}(x + (x+1)^{r} + (x+1)^{r^2})$ $3$-valued Lemma 3.7 $WG_{g}(x) = {\rm Tr}(x + (x+1)^{q_2} + (x+1)^{q_2^2})$ at most $5$-valued Lemma 3.7 $WG_{T3}(x^d) = {\rm Tr}(x^d + (x^d+1)^{q1} + (x^d+1)^{q_2})$ at most $5$-valued Theorem 3.8
Experimental results for ideal $t$-tuple distributions of the WG transform of the Kasami power functions for $k' = 3, 4$ and $5$. When $k' = 3$, $WG_{R_3}(x^d)$ over ${\mathbb F}_{2^m}$
 [1] Alexander Zeh, Antonia Wachter. Fast multi-sequence shift-register synthesis with the Euclidean algorithm. Advances in Mathematics of Communications, 2011, 5 (4) : 667-680. doi: 10.3934/amc.2011.5.667 [2] Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237 [3] Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59 [4] Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 [5] Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen. Recursive sequences and girard-waring identities with applications in sequence transformation. Electronic Research Archive, 2020, 28 (2) : 1049-1062. doi: 10.3934/era.2020057 [6] Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87 [7] Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2021, 15 (4) : 647-662. doi: 10.3934/amc.2020087 [8] Markus Dick, Martin Gugat, Günter Leugering. Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5 (4) : 691-709. doi: 10.3934/nhm.2010.5.691 [9] Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 [10] Xianhong Xie, Yi Ouyang, Honggang Hu, Ming Mao. Construction of three classes of strictly optimal frequency-hopping sequence sets. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022024 [11] Baoquan Zhou, Yucong Dai. Stationary distribution, extinction, density function and periodicity of an n-species competition system with infinite distributed delays and nonlinear perturbations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022078 [12] Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 [13] Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015 [14] Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $\beta$-transformation. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 [15] Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409 [16] Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 [17] King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219 [18] Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001 [19] Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial and Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115 [20] Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

2020 Impact Factor: 0.935