• Previous Article
    The weight recursions for the 2-rotation symmetric quartic Boolean functions
  • AMC Home
  • This Issue
  • Next Article
    The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs
doi: 10.3934/amc.2020127

On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

* Corresponding author: Jingge Liu

Received  September 2019 Revised  March 2020 Early access  December 2020

Fund Project: This work is supported by the National Natural Science Foundation of China (NSFC) under Grant 11871025

In this paper, we generalize the notion of self-orthogonal codes to $ \sigma $-self-orthogonal codes over an arbitrary finite ring. Then, we study the $ \sigma $-self-orthogonality of constacyclic codes of length $ p^s $ over the finite commutative chain ring $ \mathbb F_{p^m} + u \mathbb F_{p^m} $, where $ p $ is a prime, $ u^2 = 0 $ and $ \sigma $ is an arbitrary ring automorphism of $ \mathbb F_{p^m} + u \mathbb F_{p^m} $. We characterize the structure of $ \sigma $-dual code of a $ \lambda $-constacyclic code of length $ p^s $ over $ \mathbb F_{p^m} + u \mathbb F_{p^m} $. Further, the necessary and sufficient conditions for a $ \lambda $-constacyclic code to be $ \sigma $-self-orthogonal are provided. In particular, we determine all $ \sigma $-self-dual constacyclic codes of length $ p^s $ over $ \mathbb F_{p^m} + u \mathbb F_{p^m} $. In the end of this paper, when $ p $ is an odd prime, we extend the results to constacyclic codes of length $ 2 p^s $.

Citation: Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, doi: 10.3934/amc.2020127
References:
[1]

E. F. J. Assmus and H. F. J. Mattson, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-151.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic $p$, Quart. J. Math. Oxford Ser., 42 (1991), 387-391.  doi: 10.1093/qmath/42.1.387.  Google Scholar

[3]

C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A, 78 (1997), 92-119.  doi: 10.1006/jcta.1996.2763.  Google Scholar

[4]

E. R. Berlekamp, Algebraic Coding Theory, Mc Graw-Hill Book Company, 1968. doi: 10.1007/0-387-27105-8_9.  Google Scholar

[5]

E. R. Berlekamp, Negacyclic codes for the Lee metric, in Proc. Conf. Combinatorial Mathematics and its Applications, Chapel Hill, NC, 1967,298–316. doi: 10.1142/9789814635905_0009.  Google Scholar

[6]

T. Blackford, Cyclic codes over $\mathbb{Z}_4$ of oddly even length, Discrete Appl. Math., 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.  Google Scholar

[7]

A. R. CalderbankA. R. HammonsP. V. KumarN. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.), 29 (1993), 218-222.  doi: 10.1090/S0273-0979-1993-00426-9.  Google Scholar

[8]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[9]

B. ChenH. Q. DinhH. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Finite Fields Appl., 37 (2016), 108-130.  doi: 10.1016/j.ffa.2015.09.006.  Google Scholar

[10]

B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS Codes, IEEE Trans. Inform. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.  Google Scholar

[11]

H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.  doi: 10.1109/TIT.2009.2013015.  Google Scholar

[12]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[13]

H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory, 51 (2005), 4252-4262.  doi: 10.1109/TIT.2005.859284.  Google Scholar

[14]

H. Q. DinhY. FanH. LiuX. Liu and S. Sriboonchitta, On self-dual constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Discrete Math., 341 (2018), 324-335.  doi: 10.1016/j.disc.2017.08.044.  Google Scholar

[15]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[16]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[17]

S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl., 13 (2007), 31-57.  doi: 10.1016/j.ffa.2005.06.004.  Google Scholar

[18]

Y. Fan and L. Zhang, Galois self-dual constacyclic codes, Des. Codes Cryptogr., 84 (2017), 473-492.  doi: 10.1007/s10623-016-0282-8.  Google Scholar

[19]

A. R. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[20]

X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS Codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[21]

H. Liu and Y. Maouche, Some repeated-root constacyclic codes over Galois rings, IEEE Trans. Inform. Theory, 63 (2017), 6247-6255.  doi: 10.1109/TIT.2017.2738627.  Google Scholar

[22]

H. Liu and X. Pan, Galois hulls of linear codes over finite fields, Des. Codes Cryptogr., 88 (2020), 241-255.  doi: 10.1007/s10623-019-00681-2.  Google Scholar

[23]

X. LiuY. Fan and H. Liu, Galois LCD codes over finite fields, Finite Fields Appl., 49 (2018), 227-242.  doi: 10.1016/j.ffa.2017.10.001.  Google Scholar

[24]

X. LiuL. Yu and P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21-32.  doi: 10.1016/j.ffa.2018.09.001.  Google Scholar

[25]

A. A. Nechaev, Kerdock code in cyclic form, Discrete Math. Appl., 1 (1991), 365-384.  doi: 10.1515/dma.1991.1.4.365.  Google Scholar

[26]

V. Pless, A classification of self-orthogonal codes over $\mathbb{F}_2$, Discrete Math., 3 (1972), 209-246.  doi: 10.1016/0012-365X(72)90034-9.  Google Scholar

[27]

R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2, m)$, Discrete Appl. Math., 157 (2009), 2892-2903.  doi: 10.1016/j.dam.2009.03.001.  Google Scholar

show all references

References:
[1]

E. F. J. Assmus and H. F. J. Mattson, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-151.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic $p$, Quart. J. Math. Oxford Ser., 42 (1991), 387-391.  doi: 10.1093/qmath/42.1.387.  Google Scholar

[3]

C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A, 78 (1997), 92-119.  doi: 10.1006/jcta.1996.2763.  Google Scholar

[4]

E. R. Berlekamp, Algebraic Coding Theory, Mc Graw-Hill Book Company, 1968. doi: 10.1007/0-387-27105-8_9.  Google Scholar

[5]

E. R. Berlekamp, Negacyclic codes for the Lee metric, in Proc. Conf. Combinatorial Mathematics and its Applications, Chapel Hill, NC, 1967,298–316. doi: 10.1142/9789814635905_0009.  Google Scholar

[6]

T. Blackford, Cyclic codes over $\mathbb{Z}_4$ of oddly even length, Discrete Appl. Math., 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.  Google Scholar

[7]

A. R. CalderbankA. R. HammonsP. V. KumarN. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.), 29 (1993), 218-222.  doi: 10.1090/S0273-0979-1993-00426-9.  Google Scholar

[8]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[9]

B. ChenH. Q. DinhH. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Finite Fields Appl., 37 (2016), 108-130.  doi: 10.1016/j.ffa.2015.09.006.  Google Scholar

[10]

B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS Codes, IEEE Trans. Inform. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.  Google Scholar

[11]

H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.  doi: 10.1109/TIT.2009.2013015.  Google Scholar

[12]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[13]

H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory, 51 (2005), 4252-4262.  doi: 10.1109/TIT.2005.859284.  Google Scholar

[14]

H. Q. DinhY. FanH. LiuX. Liu and S. Sriboonchitta, On self-dual constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Discrete Math., 341 (2018), 324-335.  doi: 10.1016/j.disc.2017.08.044.  Google Scholar

[15]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[16]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[17]

S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl., 13 (2007), 31-57.  doi: 10.1016/j.ffa.2005.06.004.  Google Scholar

[18]

Y. Fan and L. Zhang, Galois self-dual constacyclic codes, Des. Codes Cryptogr., 84 (2017), 473-492.  doi: 10.1007/s10623-016-0282-8.  Google Scholar

[19]

A. R. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[20]

X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS Codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[21]

H. Liu and Y. Maouche, Some repeated-root constacyclic codes over Galois rings, IEEE Trans. Inform. Theory, 63 (2017), 6247-6255.  doi: 10.1109/TIT.2017.2738627.  Google Scholar

[22]

H. Liu and X. Pan, Galois hulls of linear codes over finite fields, Des. Codes Cryptogr., 88 (2020), 241-255.  doi: 10.1007/s10623-019-00681-2.  Google Scholar

[23]

X. LiuY. Fan and H. Liu, Galois LCD codes over finite fields, Finite Fields Appl., 49 (2018), 227-242.  doi: 10.1016/j.ffa.2017.10.001.  Google Scholar

[24]

X. LiuL. Yu and P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21-32.  doi: 10.1016/j.ffa.2018.09.001.  Google Scholar

[25]

A. A. Nechaev, Kerdock code in cyclic form, Discrete Math. Appl., 1 (1991), 365-384.  doi: 10.1515/dma.1991.1.4.365.  Google Scholar

[26]

V. Pless, A classification of self-orthogonal codes over $\mathbb{F}_2$, Discrete Math., 3 (1972), 209-246.  doi: 10.1016/0012-365X(72)90034-9.  Google Scholar

[27]

R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2, m)$, Discrete Appl. Math., 157 (2009), 2892-2903.  doi: 10.1016/j.dam.2009.03.001.  Google Scholar

[1]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[2]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[3]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[4]

María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018

[5]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[6]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[7]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[8]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[9]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[10]

Huyuan Chen, Hichem Hajaiej. Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021109

[11]

Yan Liu, Minjia Shi, Hai Q. Dinh, Songsak Sriboonchitta. Repeated-root constacyclic codes of length $ 3\ell^mp^s $. Advances in Mathematics of Communications, 2020, 14 (2) : 359-378. doi: 10.3934/amc.2020025

[12]

Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189

[13]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[14]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[15]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[16]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[17]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[18]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[19]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[20]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (86)
  • HTML views (257)
  • Cited by (0)

Other articles
by authors

[Back to Top]