doi: 10.3934/amc.2020127

On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

* Corresponding author: Jingge Liu

Received  September 2019 Revised  March 2020 Published  December 2020

Fund Project: This work is supported by the National Natural Science Foundation of China (NSFC) under Grant 11871025

In this paper, we generalize the notion of self-orthogonal codes to $ \sigma $-self-orthogonal codes over an arbitrary finite ring. Then, we study the $ \sigma $-self-orthogonality of constacyclic codes of length $ p^s $ over the finite commutative chain ring $ \mathbb F_{p^m} + u \mathbb F_{p^m} $, where $ p $ is a prime, $ u^2 = 0 $ and $ \sigma $ is an arbitrary ring automorphism of $ \mathbb F_{p^m} + u \mathbb F_{p^m} $. We characterize the structure of $ \sigma $-dual code of a $ \lambda $-constacyclic code of length $ p^s $ over $ \mathbb F_{p^m} + u \mathbb F_{p^m} $. Further, the necessary and sufficient conditions for a $ \lambda $-constacyclic code to be $ \sigma $-self-orthogonal are provided. In particular, we determine all $ \sigma $-self-dual constacyclic codes of length $ p^s $ over $ \mathbb F_{p^m} + u \mathbb F_{p^m} $. In the end of this paper, when $ p $ is an odd prime, we extend the results to constacyclic codes of length $ 2 p^s $.

Citation: Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, doi: 10.3934/amc.2020127
References:
[1]

E. F. J. Assmus and H. F. J. Mattson, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-151.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic $p$, Quart. J. Math. Oxford Ser., 42 (1991), 387-391.  doi: 10.1093/qmath/42.1.387.  Google Scholar

[3]

C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A, 78 (1997), 92-119.  doi: 10.1006/jcta.1996.2763.  Google Scholar

[4]

E. R. Berlekamp, Algebraic Coding Theory, Mc Graw-Hill Book Company, 1968. doi: 10.1007/0-387-27105-8_9.  Google Scholar

[5]

E. R. Berlekamp, Negacyclic codes for the Lee metric, in Proc. Conf. Combinatorial Mathematics and its Applications, Chapel Hill, NC, 1967,298–316. doi: 10.1142/9789814635905_0009.  Google Scholar

[6]

T. Blackford, Cyclic codes over $\mathbb{Z}_4$ of oddly even length, Discrete Appl. Math., 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.  Google Scholar

[7]

A. R. CalderbankA. R. HammonsP. V. KumarN. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.), 29 (1993), 218-222.  doi: 10.1090/S0273-0979-1993-00426-9.  Google Scholar

[8]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[9]

B. ChenH. Q. DinhH. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Finite Fields Appl., 37 (2016), 108-130.  doi: 10.1016/j.ffa.2015.09.006.  Google Scholar

[10]

B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS Codes, IEEE Trans. Inform. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.  Google Scholar

[11]

H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.  doi: 10.1109/TIT.2009.2013015.  Google Scholar

[12]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[13]

H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory, 51 (2005), 4252-4262.  doi: 10.1109/TIT.2005.859284.  Google Scholar

[14]

H. Q. DinhY. FanH. LiuX. Liu and S. Sriboonchitta, On self-dual constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Discrete Math., 341 (2018), 324-335.  doi: 10.1016/j.disc.2017.08.044.  Google Scholar

[15]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[16]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[17]

S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl., 13 (2007), 31-57.  doi: 10.1016/j.ffa.2005.06.004.  Google Scholar

[18]

Y. Fan and L. Zhang, Galois self-dual constacyclic codes, Des. Codes Cryptogr., 84 (2017), 473-492.  doi: 10.1007/s10623-016-0282-8.  Google Scholar

[19]

A. R. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[20]

X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS Codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[21]

H. Liu and Y. Maouche, Some repeated-root constacyclic codes over Galois rings, IEEE Trans. Inform. Theory, 63 (2017), 6247-6255.  doi: 10.1109/TIT.2017.2738627.  Google Scholar

[22]

H. Liu and X. Pan, Galois hulls of linear codes over finite fields, Des. Codes Cryptogr., 88 (2020), 241-255.  doi: 10.1007/s10623-019-00681-2.  Google Scholar

[23]

X. LiuY. Fan and H. Liu, Galois LCD codes over finite fields, Finite Fields Appl., 49 (2018), 227-242.  doi: 10.1016/j.ffa.2017.10.001.  Google Scholar

[24]

X. LiuL. Yu and P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21-32.  doi: 10.1016/j.ffa.2018.09.001.  Google Scholar

[25]

A. A. Nechaev, Kerdock code in cyclic form, Discrete Math. Appl., 1 (1991), 365-384.  doi: 10.1515/dma.1991.1.4.365.  Google Scholar

[26]

V. Pless, A classification of self-orthogonal codes over $\mathbb{F}_2$, Discrete Math., 3 (1972), 209-246.  doi: 10.1016/0012-365X(72)90034-9.  Google Scholar

[27]

R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2, m)$, Discrete Appl. Math., 157 (2009), 2892-2903.  doi: 10.1016/j.dam.2009.03.001.  Google Scholar

show all references

References:
[1]

E. F. J. Assmus and H. F. J. Mattson, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-151.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic $p$, Quart. J. Math. Oxford Ser., 42 (1991), 387-391.  doi: 10.1093/qmath/42.1.387.  Google Scholar

[3]

C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A, 78 (1997), 92-119.  doi: 10.1006/jcta.1996.2763.  Google Scholar

[4]

E. R. Berlekamp, Algebraic Coding Theory, Mc Graw-Hill Book Company, 1968. doi: 10.1007/0-387-27105-8_9.  Google Scholar

[5]

E. R. Berlekamp, Negacyclic codes for the Lee metric, in Proc. Conf. Combinatorial Mathematics and its Applications, Chapel Hill, NC, 1967,298–316. doi: 10.1142/9789814635905_0009.  Google Scholar

[6]

T. Blackford, Cyclic codes over $\mathbb{Z}_4$ of oddly even length, Discrete Appl. Math., 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.  Google Scholar

[7]

A. R. CalderbankA. R. HammonsP. V. KumarN. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.), 29 (1993), 218-222.  doi: 10.1090/S0273-0979-1993-00426-9.  Google Scholar

[8]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[9]

B. ChenH. Q. DinhH. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Finite Fields Appl., 37 (2016), 108-130.  doi: 10.1016/j.ffa.2015.09.006.  Google Scholar

[10]

B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS Codes, IEEE Trans. Inform. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.  Google Scholar

[11]

H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.  doi: 10.1109/TIT.2009.2013015.  Google Scholar

[12]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[13]

H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory, 51 (2005), 4252-4262.  doi: 10.1109/TIT.2005.859284.  Google Scholar

[14]

H. Q. DinhY. FanH. LiuX. Liu and S. Sriboonchitta, On self-dual constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, Discrete Math., 341 (2018), 324-335.  doi: 10.1016/j.disc.2017.08.044.  Google Scholar

[15]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[16]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[17]

S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl., 13 (2007), 31-57.  doi: 10.1016/j.ffa.2005.06.004.  Google Scholar

[18]

Y. Fan and L. Zhang, Galois self-dual constacyclic codes, Des. Codes Cryptogr., 84 (2017), 473-492.  doi: 10.1007/s10623-016-0282-8.  Google Scholar

[19]

A. R. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[20]

X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS Codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[21]

H. Liu and Y. Maouche, Some repeated-root constacyclic codes over Galois rings, IEEE Trans. Inform. Theory, 63 (2017), 6247-6255.  doi: 10.1109/TIT.2017.2738627.  Google Scholar

[22]

H. Liu and X. Pan, Galois hulls of linear codes over finite fields, Des. Codes Cryptogr., 88 (2020), 241-255.  doi: 10.1007/s10623-019-00681-2.  Google Scholar

[23]

X. LiuY. Fan and H. Liu, Galois LCD codes over finite fields, Finite Fields Appl., 49 (2018), 227-242.  doi: 10.1016/j.ffa.2017.10.001.  Google Scholar

[24]

X. LiuL. Yu and P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21-32.  doi: 10.1016/j.ffa.2018.09.001.  Google Scholar

[25]

A. A. Nechaev, Kerdock code in cyclic form, Discrete Math. Appl., 1 (1991), 365-384.  doi: 10.1515/dma.1991.1.4.365.  Google Scholar

[26]

V. Pless, A classification of self-orthogonal codes over $\mathbb{F}_2$, Discrete Math., 3 (1972), 209-246.  doi: 10.1016/0012-365X(72)90034-9.  Google Scholar

[27]

R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2, m)$, Discrete Appl. Math., 157 (2009), 2892-2903.  doi: 10.1016/j.dam.2009.03.001.  Google Scholar

[1]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[2]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[3]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[6]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[7]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[8]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[9]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[10]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[13]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[14]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[15]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[16]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[18]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[19]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[20]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

2019 Impact Factor: 0.734

Article outline

[Back to Top]