doi: 10.3934/amc.2020129

Codes with few weights arising from linear sets

Dipartimento di Matematica e Fisica, , Università degli Studi della Campania "Luigi Vanvitelli", I– 81100 Caserta, Italy

* Corresponding author: Ferdinando Zullo

Received  May 2020 Revised  October 2020 Published  December 2020

Fund Project: This research was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The authors were also supported by the project "VALERE: VAnviteLli pEr la RicErca" of the University of Campania "Luigi Vanvitelli"

In this article we present a class of codes with few weights arising from a special type of linear sets. We explicitly show the weights of such codes, their weight enumerators and possible choices for their generator matrices. In particular, our construction yields linear codes with three weights and, in some cases, almost MDS codes. The interest for these codes relies on their applications to authentication codes and secret schemes, and their connections with further objects such as association schemes and graphs.

Citation: Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, doi: 10.3934/amc.2020129
References:
[1]

A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.  doi: 10.1007/s10623-016-0302-8.  Google Scholar

[2]

T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.  doi: 10.22108/toc.2019.112621.1584.  Google Scholar

[3]

D. BartoliC. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.  doi: 10.26493/1855-3974.2137.7fa.  Google Scholar

[4]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.  doi: 10.1023/A:1005283806897.  Google Scholar

[5]

R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.   Google Scholar

[6]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.  Google Scholar

[7]

B. CsajbókG. MarinoO. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.  doi: 10.1016/j.laa.2018.02.027.  Google Scholar

[8]

B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp. doi: 10.1016/j.disc.2020.111985.  Google Scholar

[9]

B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar

[10]

B. CsajbókG. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.  doi: 10.1016/j.ffa.2018.08.001.  Google Scholar

[11]

M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.  doi: 10.1007/BF00124590.  Google Scholar

[12]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[13]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[14]

K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882.   Google Scholar

[15]

C. DingC. LiN. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.  Google Scholar

[16]

C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124. doi: 10.1142/9789812832245_0009.  Google Scholar

[17]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.  Google Scholar

[18]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[19]

N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.  Google Scholar

[20]

È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.   Google Scholar

[21]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108. doi: 10.1109/ISIT.2005.1523717.  Google Scholar

[22]

M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.  Google Scholar

[23]

D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.  doi: 10.1007/s00013-016-0949-4.  Google Scholar

[24]

G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.  doi: 10.1016/j.jcta.2017.01.002.  Google Scholar

[25]

G. LunardonR. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.  doi: 10.1016/j.jcta.2018.05.004.  Google Scholar

[26]

G. LunardonR. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.  doi: 10.1007/s10801-017-0755-5.  Google Scholar

[27]

S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.  Google Scholar

[28]

V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar

[29]

G. MarinoM. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.  doi: 10.1016/j.laa.2020.01.004.  Google Scholar

[30]

O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.  doi: 10.1016/j.laa.2020.05.009.  Google Scholar

[31]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[32]

J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.  doi: 10.1007/s10623-019-00703-z.  Google Scholar

[33]

M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.  doi: 10.1007/s10623-019-00628-7.  Google Scholar

[34]

M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007. doi: 10.1090/surv/139.  Google Scholar

[35]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[36]

Y. WuQ. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.  doi: 10.1007/s10623-018-00595-5.  Google Scholar

[37]

C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp. doi: 10.1016/j.disc.2019.111800.  Google Scholar

[38]

G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar

show all references

References:
[1]

A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.  doi: 10.1007/s10623-016-0302-8.  Google Scholar

[2]

T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.  doi: 10.22108/toc.2019.112621.1584.  Google Scholar

[3]

D. BartoliC. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.  doi: 10.26493/1855-3974.2137.7fa.  Google Scholar

[4]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.  doi: 10.1023/A:1005283806897.  Google Scholar

[5]

R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.   Google Scholar

[6]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.  Google Scholar

[7]

B. CsajbókG. MarinoO. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.  doi: 10.1016/j.laa.2018.02.027.  Google Scholar

[8]

B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp. doi: 10.1016/j.disc.2020.111985.  Google Scholar

[9]

B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar

[10]

B. CsajbókG. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.  doi: 10.1016/j.ffa.2018.08.001.  Google Scholar

[11]

M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.  doi: 10.1007/BF00124590.  Google Scholar

[12]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[13]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[14]

K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882.   Google Scholar

[15]

C. DingC. LiN. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.  Google Scholar

[16]

C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124. doi: 10.1142/9789812832245_0009.  Google Scholar

[17]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.  Google Scholar

[18]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[19]

N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.  Google Scholar

[20]

È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.   Google Scholar

[21]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108. doi: 10.1109/ISIT.2005.1523717.  Google Scholar

[22]

M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.  Google Scholar

[23]

D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.  doi: 10.1007/s00013-016-0949-4.  Google Scholar

[24]

G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.  doi: 10.1016/j.jcta.2017.01.002.  Google Scholar

[25]

G. LunardonR. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.  doi: 10.1016/j.jcta.2018.05.004.  Google Scholar

[26]

G. LunardonR. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.  doi: 10.1007/s10801-017-0755-5.  Google Scholar

[27]

S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.  Google Scholar

[28]

V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar

[29]

G. MarinoM. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.  doi: 10.1016/j.laa.2020.01.004.  Google Scholar

[30]

O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.  doi: 10.1016/j.laa.2020.05.009.  Google Scholar

[31]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[32]

J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.  doi: 10.1007/s10623-019-00703-z.  Google Scholar

[33]

M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.  doi: 10.1007/s10623-019-00628-7.  Google Scholar

[34]

M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007. doi: 10.1090/surv/139.  Google Scholar

[35]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[36]

Y. WuQ. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.  doi: 10.1007/s10623-018-00595-5.  Google Scholar

[37]

C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp. doi: 10.1016/j.disc.2019.111800.  Google Scholar

[38]

G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar

Table 1.  Possible choices for $ f_1, \ldots, f_r $
$ n $ $ r $ $ (f_1(x), \ldots, f_r(x)) $ conditions references
$ (x, x^{q^s}, \ldots, x^{q^{s(r-1)}}) $ $ \gcd(s, n)=1 $ [12,20,21]
$ (x^{q^s}, \ldots, x^{q^{s(r-2)}}, x+\delta x^{q^{s(r-1)}}) $ $ \begin{array}{cc} \gcd(s, n)=1, \\ \mathrm{N}_{q^n/q}(\delta)\neq (-1)^{nr}\end{array} $ [31,25]
$ 6 $ $ 4 $ $ (x^q, x^{q^2}, x^{q^4}, x-\delta^{q^5} x^{q^{3}}) $ $ q >4\\ \text{certain}\ \ \text{ choices}\ \text{ of} \, \delta $ [7,30]
$ 6 $ $ 4 $ $ (x^q, x^{q^3}, x-x^{q^2}, x^{q^4}-\delta x) $ $ \begin{array}{cccc}q \quad \text{odd}\\ \delta^2+\delta =1 \end{array} $ [10,29]
$ 6 $ $ 4 $ $ \begin{array}{cc} (h^{q^2-1}x^q+h^{q-1}x^{q^2}, x^{q^3}, \\ x^q-h^{q-1}x^{q^4}, x^q-h^{q-1}x^{q^5}) \end{array} $ $ \begin{array}{cccc}q \quad \text{odd}\\ h^{q^3+1}=-1 \end{array} $ [3,37]
$ 7 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, 7)=1\end{array} $ [8]
$ 7 $ $ 4 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, n)=1\end{array} $ [8]
$ 8 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1\end{array} $ [8]
$ 8 $ $ 5 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{{5s}}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1 \end{array} $ [8]
$ 8 $ $ 6 $ $ (x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x-\delta x^{q^4}) $ $ \begin{array}{cc} q\, \text{odd}, \\ \delta^2=-1\end{array} $ [7]
$ n $ $ r $ $ (f_1(x), \ldots, f_r(x)) $ conditions references
$ (x, x^{q^s}, \ldots, x^{q^{s(r-1)}}) $ $ \gcd(s, n)=1 $ [12,20,21]
$ (x^{q^s}, \ldots, x^{q^{s(r-2)}}, x+\delta x^{q^{s(r-1)}}) $ $ \begin{array}{cc} \gcd(s, n)=1, \\ \mathrm{N}_{q^n/q}(\delta)\neq (-1)^{nr}\end{array} $ [31,25]
$ 6 $ $ 4 $ $ (x^q, x^{q^2}, x^{q^4}, x-\delta^{q^5} x^{q^{3}}) $ $ q >4\\ \text{certain}\ \ \text{ choices}\ \text{ of} \, \delta $ [7,30]
$ 6 $ $ 4 $ $ (x^q, x^{q^3}, x-x^{q^2}, x^{q^4}-\delta x) $ $ \begin{array}{cccc}q \quad \text{odd}\\ \delta^2+\delta =1 \end{array} $ [10,29]
$ 6 $ $ 4 $ $ \begin{array}{cc} (h^{q^2-1}x^q+h^{q-1}x^{q^2}, x^{q^3}, \\ x^q-h^{q-1}x^{q^4}, x^q-h^{q-1}x^{q^5}) \end{array} $ $ \begin{array}{cccc}q \quad \text{odd}\\ h^{q^3+1}=-1 \end{array} $ [3,37]
$ 7 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, 7)=1\end{array} $ [8]
$ 7 $ $ 4 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, n)=1\end{array} $ [8]
$ 8 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1\end{array} $ [8]
$ 8 $ $ 5 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{{5s}}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1 \end{array} $ [8]
$ 8 $ $ 6 $ $ (x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x-\delta x^{q^4}) $ $ \begin{array}{cc} q\, \text{odd}, \\ \delta^2=-1\end{array} $ [7]
[1]

Yiwei Liu, Zihui Liu. On some classes of codes with a few weights. Advances in Mathematics of Communications, 2018, 12 (2) : 415-428. doi: 10.3934/amc.2018025

[2]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[3]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[4]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[7]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[8]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[9]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[10]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[11]

Pablo Angulo-Ardoy. On the set of metrics without local limiting Carleman weights. Inverse Problems & Imaging, 2017, 11 (1) : 47-64. doi: 10.3934/ipi.2017003

[12]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[13]

Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127-145. doi: 10.3934/amc.2013.7.127

[14]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[15]

Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59.

[16]

Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120

[17]

Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045

[18]

Yongbo Xia, Tor Helleseth, Chunlei Li. Some new classes of cyclic codes with three or six weights. Advances in Mathematics of Communications, 2015, 9 (1) : 23-36. doi: 10.3934/amc.2015.9.23

[19]

Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115-122. doi: 10.3934/amc.2017006

[20]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (34)
  • HTML views (152)
  • Cited by (0)

Other articles
by authors

[Back to Top]