doi: 10.3934/amc.2020129

Codes with few weights arising from linear sets

Dipartimento di Matematica e Fisica, , Università degli Studi della Campania "Luigi Vanvitelli", I– 81100 Caserta, Italy

* Corresponding author: Ferdinando Zullo

Received  May 2020 Revised  October 2020 Published  December 2020

Fund Project: This research was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The authors were also supported by the project "VALERE: VAnviteLli pEr la RicErca" of the University of Campania "Luigi Vanvitelli"

In this article we present a class of codes with few weights arising from a special type of linear sets. We explicitly show the weights of such codes, their weight enumerators and possible choices for their generator matrices. In particular, our construction yields linear codes with three weights and, in some cases, almost MDS codes. The interest for these codes relies on their applications to authentication codes and secret schemes, and their connections with further objects such as association schemes and graphs.

Citation: Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, doi: 10.3934/amc.2020129
References:
[1]

A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.  doi: 10.1007/s10623-016-0302-8.  Google Scholar

[2]

T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.  doi: 10.22108/toc.2019.112621.1584.  Google Scholar

[3]

D. BartoliC. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.  doi: 10.26493/1855-3974.2137.7fa.  Google Scholar

[4]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.  doi: 10.1023/A:1005283806897.  Google Scholar

[5]

R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.   Google Scholar

[6]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.  Google Scholar

[7]

B. CsajbókG. MarinoO. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.  doi: 10.1016/j.laa.2018.02.027.  Google Scholar

[8]

B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp. doi: 10.1016/j.disc.2020.111985.  Google Scholar

[9]

B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar

[10]

B. CsajbókG. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.  doi: 10.1016/j.ffa.2018.08.001.  Google Scholar

[11]

M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.  doi: 10.1007/BF00124590.  Google Scholar

[12]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[13]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[14]

K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882.   Google Scholar

[15]

C. DingC. LiN. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.  Google Scholar

[16]

C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124. doi: 10.1142/9789812832245_0009.  Google Scholar

[17]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.  Google Scholar

[18]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[19]

N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.  Google Scholar

[20]

È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.   Google Scholar

[21]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108. doi: 10.1109/ISIT.2005.1523717.  Google Scholar

[22]

M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.  Google Scholar

[23]

D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.  doi: 10.1007/s00013-016-0949-4.  Google Scholar

[24]

G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.  doi: 10.1016/j.jcta.2017.01.002.  Google Scholar

[25]

G. LunardonR. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.  doi: 10.1016/j.jcta.2018.05.004.  Google Scholar

[26]

G. LunardonR. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.  doi: 10.1007/s10801-017-0755-5.  Google Scholar

[27]

S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.  Google Scholar

[28]

V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar

[29]

G. MarinoM. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.  doi: 10.1016/j.laa.2020.01.004.  Google Scholar

[30]

O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.  doi: 10.1016/j.laa.2020.05.009.  Google Scholar

[31]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[32]

J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.  doi: 10.1007/s10623-019-00703-z.  Google Scholar

[33]

M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.  doi: 10.1007/s10623-019-00628-7.  Google Scholar

[34]

M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007. doi: 10.1090/surv/139.  Google Scholar

[35]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[36]

Y. WuQ. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.  doi: 10.1007/s10623-018-00595-5.  Google Scholar

[37]

C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp. doi: 10.1016/j.disc.2019.111800.  Google Scholar

[38]

G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar

show all references

References:
[1]

A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.  doi: 10.1007/s10623-016-0302-8.  Google Scholar

[2]

T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.  doi: 10.22108/toc.2019.112621.1584.  Google Scholar

[3]

D. BartoliC. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.  doi: 10.26493/1855-3974.2137.7fa.  Google Scholar

[4]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.  doi: 10.1023/A:1005283806897.  Google Scholar

[5]

R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.   Google Scholar

[6]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.  Google Scholar

[7]

B. CsajbókG. MarinoO. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.  doi: 10.1016/j.laa.2018.02.027.  Google Scholar

[8]

B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp. doi: 10.1016/j.disc.2020.111985.  Google Scholar

[9]

B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar

[10]

B. CsajbókG. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.  doi: 10.1016/j.ffa.2018.08.001.  Google Scholar

[11]

M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.  doi: 10.1007/BF00124590.  Google Scholar

[12]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[13]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[14]

K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882.   Google Scholar

[15]

C. DingC. LiN. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.  Google Scholar

[16]

C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124. doi: 10.1142/9789812832245_0009.  Google Scholar

[17]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.  Google Scholar

[18]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[19]

N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.  Google Scholar

[20]

È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.   Google Scholar

[21]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108. doi: 10.1109/ISIT.2005.1523717.  Google Scholar

[22]

M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.  Google Scholar

[23]

D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.  doi: 10.1007/s00013-016-0949-4.  Google Scholar

[24]

G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.  doi: 10.1016/j.jcta.2017.01.002.  Google Scholar

[25]

G. LunardonR. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.  doi: 10.1016/j.jcta.2018.05.004.  Google Scholar

[26]

G. LunardonR. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.  doi: 10.1007/s10801-017-0755-5.  Google Scholar

[27]

S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.  Google Scholar

[28]

V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar

[29]

G. MarinoM. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.  doi: 10.1016/j.laa.2020.01.004.  Google Scholar

[30]

O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.  doi: 10.1016/j.laa.2020.05.009.  Google Scholar

[31]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[32]

J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.  doi: 10.1007/s10623-019-00703-z.  Google Scholar

[33]

M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.  doi: 10.1007/s10623-019-00628-7.  Google Scholar

[34]

M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007. doi: 10.1090/surv/139.  Google Scholar

[35]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[36]

Y. WuQ. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.  doi: 10.1007/s10623-018-00595-5.  Google Scholar

[37]

C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp. doi: 10.1016/j.disc.2019.111800.  Google Scholar

[38]

G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar

Table 1.  Possible choices for $ f_1, \ldots, f_r $
$ n $ $ r $ $ (f_1(x), \ldots, f_r(x)) $ conditions references
$ (x, x^{q^s}, \ldots, x^{q^{s(r-1)}}) $ $ \gcd(s, n)=1 $ [12,20,21]
$ (x^{q^s}, \ldots, x^{q^{s(r-2)}}, x+\delta x^{q^{s(r-1)}}) $ $ \begin{array}{cc} \gcd(s, n)=1, \\ \mathrm{N}_{q^n/q}(\delta)\neq (-1)^{nr}\end{array} $ [31,25]
$ 6 $ $ 4 $ $ (x^q, x^{q^2}, x^{q^4}, x-\delta^{q^5} x^{q^{3}}) $ $ q >4\\ \text{certain}\ \ \text{ choices}\ \text{ of} \, \delta $ [7,30]
$ 6 $ $ 4 $ $ (x^q, x^{q^3}, x-x^{q^2}, x^{q^4}-\delta x) $ $ \begin{array}{cccc}q \quad \text{odd}\\ \delta^2+\delta =1 \end{array} $ [10,29]
$ 6 $ $ 4 $ $ \begin{array}{cc} (h^{q^2-1}x^q+h^{q-1}x^{q^2}, x^{q^3}, \\ x^q-h^{q-1}x^{q^4}, x^q-h^{q-1}x^{q^5}) \end{array} $ $ \begin{array}{cccc}q \quad \text{odd}\\ h^{q^3+1}=-1 \end{array} $ [3,37]
$ 7 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, 7)=1\end{array} $ [8]
$ 7 $ $ 4 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, n)=1\end{array} $ [8]
$ 8 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1\end{array} $ [8]
$ 8 $ $ 5 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{{5s}}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1 \end{array} $ [8]
$ 8 $ $ 6 $ $ (x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x-\delta x^{q^4}) $ $ \begin{array}{cc} q\, \text{odd}, \\ \delta^2=-1\end{array} $ [7]
$ n $ $ r $ $ (f_1(x), \ldots, f_r(x)) $ conditions references
$ (x, x^{q^s}, \ldots, x^{q^{s(r-1)}}) $ $ \gcd(s, n)=1 $ [12,20,21]
$ (x^{q^s}, \ldots, x^{q^{s(r-2)}}, x+\delta x^{q^{s(r-1)}}) $ $ \begin{array}{cc} \gcd(s, n)=1, \\ \mathrm{N}_{q^n/q}(\delta)\neq (-1)^{nr}\end{array} $ [31,25]
$ 6 $ $ 4 $ $ (x^q, x^{q^2}, x^{q^4}, x-\delta^{q^5} x^{q^{3}}) $ $ q >4\\ \text{certain}\ \ \text{ choices}\ \text{ of} \, \delta $ [7,30]
$ 6 $ $ 4 $ $ (x^q, x^{q^3}, x-x^{q^2}, x^{q^4}-\delta x) $ $ \begin{array}{cccc}q \quad \text{odd}\\ \delta^2+\delta =1 \end{array} $ [10,29]
$ 6 $ $ 4 $ $ \begin{array}{cc} (h^{q^2-1}x^q+h^{q-1}x^{q^2}, x^{q^3}, \\ x^q-h^{q-1}x^{q^4}, x^q-h^{q-1}x^{q^5}) \end{array} $ $ \begin{array}{cccc}q \quad \text{odd}\\ h^{q^3+1}=-1 \end{array} $ [3,37]
$ 7 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, 7)=1\end{array} $ [8]
$ 7 $ $ 4 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, n)=1\end{array} $ [8]
$ 8 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1\end{array} $ [8]
$ 8 $ $ 5 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{{5s}}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1 \end{array} $ [8]
$ 8 $ $ 6 $ $ (x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x-\delta x^{q^4}) $ $ \begin{array}{cc} q\, \text{odd}, \\ \delta^2=-1\end{array} $ [7]
[1]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[2]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[3]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[4]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[5]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[6]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[9]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[11]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[12]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[13]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[14]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[18]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[19]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[20]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]