doi: 10.3934/amc.2020129
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Codes with few weights arising from linear sets

Dipartimento di Matematica e Fisica, , Università degli Studi della Campania "Luigi Vanvitelli", I– 81100 Caserta, Italy

* Corresponding author: Ferdinando Zullo

Received  May 2020 Revised  October 2020 Early access December 2020

Fund Project: This research was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The authors were also supported by the project "VALERE: VAnviteLli pEr la RicErca" of the University of Campania "Luigi Vanvitelli"

In this article we present a class of codes with few weights arising from a special type of linear sets. We explicitly show the weights of such codes, their weight enumerators and possible choices for their generator matrices. In particular, our construction yields linear codes with three weights and, in some cases, almost MDS codes. The interest for these codes relies on their applications to authentication codes and secret schemes, and their connections with further objects such as association schemes and graphs.

Citation: Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, doi: 10.3934/amc.2020129
References:
[1]

A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.  doi: 10.1007/s10623-016-0302-8.

[2]

T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.  doi: 10.22108/toc.2019.112621.1584.

[3]

D. BartoliC. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.  doi: 10.26493/1855-3974.2137.7fa.

[4]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.  doi: 10.1023/A:1005283806897.

[5]

R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152. 

[6]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.

[7]

B. CsajbókG. MarinoO. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.  doi: 10.1016/j.laa.2018.02.027.

[8]

B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp. doi: 10.1016/j.disc.2020.111985.

[9]

B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590.

[10]

B. CsajbókG. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.  doi: 10.1016/j.ffa.2018.08.001.

[11]

M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.  doi: 10.1007/BF00124590.

[12]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.

[13]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.

[14]

K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. 

[15]

C. DingC. LiN. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.

[16]

C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124. doi: 10.1142/9789812832245_0009.

[17]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.

[18]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.

[19]

N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.

[20]

È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16. 

[21]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108. doi: 10.1109/ISIT.2005.1523717.

[22]

M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.

[23]

D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.  doi: 10.1007/s00013-016-0949-4.

[24]

G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.  doi: 10.1016/j.jcta.2017.01.002.

[25]

G. LunardonR. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.  doi: 10.1016/j.jcta.2018.05.004.

[26]

G. LunardonR. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.  doi: 10.1007/s10801-017-0755-5.

[27]

S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.

[28]

V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685.

[29]

G. MarinoM. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.  doi: 10.1016/j.laa.2020.01.004.

[30]

O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.  doi: 10.1016/j.laa.2020.05.009.

[31]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.

[32]

J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.  doi: 10.1007/s10623-019-00703-z.

[33]

M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.  doi: 10.1007/s10623-019-00628-7.

[34]

M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007. doi: 10.1090/surv/139.

[35]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.

[36]

Y. WuQ. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.  doi: 10.1007/s10623-018-00595-5.

[37]

C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp. doi: 10.1016/j.disc.2019.111800.

[38]

G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643.

show all references

References:
[1]

A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.  doi: 10.1007/s10623-016-0302-8.

[2]

T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.  doi: 10.22108/toc.2019.112621.1584.

[3]

D. BartoliC. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.  doi: 10.26493/1855-3974.2137.7fa.

[4]

A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.  doi: 10.1023/A:1005283806897.

[5]

R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152. 

[6]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.

[7]

B. CsajbókG. MarinoO. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.  doi: 10.1016/j.laa.2018.02.027.

[8]

B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp. doi: 10.1016/j.disc.2020.111985.

[9]

B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590.

[10]

B. CsajbókG. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.  doi: 10.1016/j.ffa.2018.08.001.

[11]

M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.  doi: 10.1007/BF00124590.

[12]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.

[13]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.

[14]

K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. 

[15]

C. DingC. LiN. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.

[16]

C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124. doi: 10.1142/9789812832245_0009.

[17]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.

[18]

C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.

[19]

N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.

[20]

È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16. 

[21]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108. doi: 10.1109/ISIT.2005.1523717.

[22]

M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.

[23]

D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.  doi: 10.1007/s00013-016-0949-4.

[24]

G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.  doi: 10.1016/j.jcta.2017.01.002.

[25]

G. LunardonR. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.  doi: 10.1016/j.jcta.2018.05.004.

[26]

G. LunardonR. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.  doi: 10.1007/s10801-017-0755-5.

[27]

S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.

[28]

V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685.

[29]

G. MarinoM. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.  doi: 10.1016/j.laa.2020.01.004.

[30]

O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.  doi: 10.1016/j.laa.2020.05.009.

[31]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.

[32]

J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.  doi: 10.1007/s10623-019-00703-z.

[33]

M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.  doi: 10.1007/s10623-019-00628-7.

[34]

M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007. doi: 10.1090/surv/139.

[35]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.

[36]

Y. WuQ. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.  doi: 10.1007/s10623-018-00595-5.

[37]

C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp. doi: 10.1016/j.disc.2019.111800.

[38]

G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643.

Table 1.  Possible choices for $ f_1, \ldots, f_r $
$ n $ $ r $ $ (f_1(x), \ldots, f_r(x)) $ conditions references
$ (x, x^{q^s}, \ldots, x^{q^{s(r-1)}}) $ $ \gcd(s, n)=1 $ [12,20,21]
$ (x^{q^s}, \ldots, x^{q^{s(r-2)}}, x+\delta x^{q^{s(r-1)}}) $ $ \begin{array}{cc} \gcd(s, n)=1, \\ \mathrm{N}_{q^n/q}(\delta)\neq (-1)^{nr}\end{array} $ [31,25]
$ 6 $ $ 4 $ $ (x^q, x^{q^2}, x^{q^4}, x-\delta^{q^5} x^{q^{3}}) $ $ q >4\\ \text{certain}\ \ \text{ choices}\ \text{ of} \, \delta $ [7,30]
$ 6 $ $ 4 $ $ (x^q, x^{q^3}, x-x^{q^2}, x^{q^4}-\delta x) $ $ \begin{array}{cccc}q \quad \text{odd}\\ \delta^2+\delta =1 \end{array} $ [10,29]
$ 6 $ $ 4 $ $ \begin{array}{cc} (h^{q^2-1}x^q+h^{q-1}x^{q^2}, x^{q^3}, \\ x^q-h^{q-1}x^{q^4}, x^q-h^{q-1}x^{q^5}) \end{array} $ $ \begin{array}{cccc}q \quad \text{odd}\\ h^{q^3+1}=-1 \end{array} $ [3,37]
$ 7 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, 7)=1\end{array} $ [8]
$ 7 $ $ 4 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, n)=1\end{array} $ [8]
$ 8 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1\end{array} $ [8]
$ 8 $ $ 5 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{{5s}}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1 \end{array} $ [8]
$ 8 $ $ 6 $ $ (x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x-\delta x^{q^4}) $ $ \begin{array}{cc} q\, \text{odd}, \\ \delta^2=-1\end{array} $ [7]
$ n $ $ r $ $ (f_1(x), \ldots, f_r(x)) $ conditions references
$ (x, x^{q^s}, \ldots, x^{q^{s(r-1)}}) $ $ \gcd(s, n)=1 $ [12,20,21]
$ (x^{q^s}, \ldots, x^{q^{s(r-2)}}, x+\delta x^{q^{s(r-1)}}) $ $ \begin{array}{cc} \gcd(s, n)=1, \\ \mathrm{N}_{q^n/q}(\delta)\neq (-1)^{nr}\end{array} $ [31,25]
$ 6 $ $ 4 $ $ (x^q, x^{q^2}, x^{q^4}, x-\delta^{q^5} x^{q^{3}}) $ $ q >4\\ \text{certain}\ \ \text{ choices}\ \text{ of} \, \delta $ [7,30]
$ 6 $ $ 4 $ $ (x^q, x^{q^3}, x-x^{q^2}, x^{q^4}-\delta x) $ $ \begin{array}{cccc}q \quad \text{odd}\\ \delta^2+\delta =1 \end{array} $ [10,29]
$ 6 $ $ 4 $ $ \begin{array}{cc} (h^{q^2-1}x^q+h^{q-1}x^{q^2}, x^{q^3}, \\ x^q-h^{q-1}x^{q^4}, x^q-h^{q-1}x^{q^5}) \end{array} $ $ \begin{array}{cccc}q \quad \text{odd}\\ h^{q^3+1}=-1 \end{array} $ [3,37]
$ 7 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, 7)=1\end{array} $ [8]
$ 7 $ $ 4 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}) $ $ \begin{array}{cc} q \quad \text{odd}, \\ \gcd(s, n)=1\end{array} $ [8]
$ 8 $ $ 3 $ $ (x, x^q, x^{q^3}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1\end{array} $ [8]
$ 8 $ $ 5 $ $ (x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{{5s}}) $ $ \begin{array}{cc} q \equiv 1 \pmod{3}, \\ \gcd(s, 8)=1 \end{array} $ [8]
$ 8 $ $ 6 $ $ (x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x-\delta x^{q^4}) $ $ \begin{array}{cc} q\, \text{odd}, \\ \delta^2=-1\end{array} $ [7]
[1]

Yiwei Liu, Zihui Liu. On some classes of codes with a few weights. Advances in Mathematics of Communications, 2018, 12 (2) : 415-428. doi: 10.3934/amc.2018025

[2]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[3]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[4]

Canze Zhu, Qunying Liao. Constructions for several classes of few-weight linear codes and their applications. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022041

[5]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[6]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[7]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[8]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[9]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[10]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[11]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[12]

Pablo Angulo-Ardoy. On the set of metrics without local limiting Carleman weights. Inverse Problems and Imaging, 2017, 11 (1) : 47-64. doi: 10.3934/ipi.2017003

[13]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[14]

Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127-145. doi: 10.3934/amc.2013.7.127

[15]

Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59.

[16]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[17]

Enhui Lim, Frédérique Oggier. On the generalised rank weights of quasi-cyclic codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022010

[18]

Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120

[19]

Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045

[20]

Yongbo Xia, Tor Helleseth, Chunlei Li. Some new classes of cyclic codes with three or six weights. Advances in Mathematics of Communications, 2015, 9 (1) : 23-36. doi: 10.3934/amc.2015.9.23

2020 Impact Factor: 0.935

Article outline

Figures and Tables

[Back to Top]