-
Previous Article
Infinite families of $ 3 $-designs from o-polynomials
- AMC Home
- This Issue
-
Next Article
Infinite families of 2-designs from a class of non-binary Kasami cyclic codes
Codes with few weights arising from linear sets
Dipartimento di Matematica e Fisica, , Università degli Studi della Campania "Luigi Vanvitelli", I– 81100 Caserta, Italy |
In this article we present a class of codes with few weights arising from a special type of linear sets. We explicitly show the weights of such codes, their weight enumerators and possible choices for their generator matrices. In particular, our construction yields linear codes with three weights and, in some cases, almost MDS codes. The interest for these codes relies on their applications to authentication codes and secret schemes, and their connections with further objects such as association schemes and graphs.
References:
[1] |
A. Aguglia and L. Giuzzi,
Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.
doi: 10.1007/s10623-016-0302-8. |
[2] |
T. L. Alderson,
A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.
doi: 10.22108/toc.2019.112621.1584. |
[3] |
D. Bartoli, C. Zanella and F. Zullo,
A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.
doi: 10.26493/1855-3974.2137.7fa. |
[4] |
A. Blokhuis and M. Lavrauw,
Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.
doi: 10.1023/A:1005283806897. |
[5] |
R. Calderbank and J. M. Goethals,
Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[6] |
A. R. Calderbank and W. M. Kantor,
The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97. |
[7] |
B. Csajbók, G. Marino, O. Polverino and C. Zanella,
A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.
doi: 10.1016/j.laa.2018.02.027. |
[8] |
B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp.
doi: 10.1016/j.disc.2020.111985. |
[9] |
B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar |
[10] |
B. Csajbók, G. Marino and F. Zullo,
New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.
doi: 10.1016/j.ffa.2018.08.001. |
[11] |
M. A. de Boer,
Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.
doi: 10.1007/BF00124590. |
[12] |
P. Delsarte,
Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[13] |
K. Ding and C. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[14] |
K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. Google Scholar |
[15] |
C. Ding, C. Li, N. Li and Z. Zhou,
Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001. |
[16] |
C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124.
doi: 10.1142/9789812832245_0009. |
[17] |
C. Ding and H. Niederreiter,
Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886. |
[18] |
C. Ding and X. Wang,
A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[19] |
N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp. |
[20] |
È. Gabidulin,
Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.
|
[21] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108.
doi: 10.1109/ISIT.2005.1523717. |
[22] |
M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[23] |
D. Liebhold and G. Nebe,
Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.
doi: 10.1007/s00013-016-0949-4. |
[24] |
G. Lunardon,
MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.
doi: 10.1016/j.jcta.2017.01.002. |
[25] |
G. Lunardon, R. Trombetti and Y. Zhou,
Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.
doi: 10.1016/j.jcta.2018.05.004. |
[26] |
G. Lunardon, R. Trombetti and Y. Zhou,
On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.
doi: 10.1007/s10801-017-0755-5. |
[27] |
S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214. |
[28] |
V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar |
[29] |
G. Marino, M. Montanucci and F. Zullo,
MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.
doi: 10.1016/j.laa.2020.01.004. |
[30] |
O. Polverino and F. Zullo,
On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.
doi: 10.1016/j.laa.2020.05.009. |
[31] |
J. Sheekey,
A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.
doi: 10.3934/amc.2016019. |
[32] |
J. Sheekey and G. Van de Voorde,
Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.
doi: 10.1007/s10623-019-00703-z. |
[33] |
M. Shi and P. Solé,
Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.
doi: 10.1007/s10623-019-00628-7. |
[34] |
M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007.
doi: 10.1090/surv/139. |
[35] |
B. Wu and Z. Liu,
Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003. |
[36] |
Y. Wu, Q. Yansheng and X. Shi,
At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.
doi: 10.1007/s10623-018-00595-5. |
[37] |
C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp.
doi: 10.1016/j.disc.2019.111800. |
[38] |
G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar |
show all references
References:
[1] |
A. Aguglia and L. Giuzzi,
Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.
doi: 10.1007/s10623-016-0302-8. |
[2] |
T. L. Alderson,
A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.
doi: 10.22108/toc.2019.112621.1584. |
[3] |
D. Bartoli, C. Zanella and F. Zullo,
A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.
doi: 10.26493/1855-3974.2137.7fa. |
[4] |
A. Blokhuis and M. Lavrauw,
Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.
doi: 10.1023/A:1005283806897. |
[5] |
R. Calderbank and J. M. Goethals,
Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[6] |
A. R. Calderbank and W. M. Kantor,
The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97. |
[7] |
B. Csajbók, G. Marino, O. Polverino and C. Zanella,
A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.
doi: 10.1016/j.laa.2018.02.027. |
[8] |
B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp.
doi: 10.1016/j.disc.2020.111985. |
[9] |
B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar |
[10] |
B. Csajbók, G. Marino and F. Zullo,
New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.
doi: 10.1016/j.ffa.2018.08.001. |
[11] |
M. A. de Boer,
Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.
doi: 10.1007/BF00124590. |
[12] |
P. Delsarte,
Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[13] |
K. Ding and C. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[14] |
K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. Google Scholar |
[15] |
C. Ding, C. Li, N. Li and Z. Zhou,
Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001. |
[16] |
C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124.
doi: 10.1142/9789812832245_0009. |
[17] |
C. Ding and H. Niederreiter,
Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886. |
[18] |
C. Ding and X. Wang,
A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[19] |
N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp. |
[20] |
È. Gabidulin,
Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.
|
[21] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108.
doi: 10.1109/ISIT.2005.1523717. |
[22] |
M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[23] |
D. Liebhold and G. Nebe,
Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.
doi: 10.1007/s00013-016-0949-4. |
[24] |
G. Lunardon,
MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.
doi: 10.1016/j.jcta.2017.01.002. |
[25] |
G. Lunardon, R. Trombetti and Y. Zhou,
Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.
doi: 10.1016/j.jcta.2018.05.004. |
[26] |
G. Lunardon, R. Trombetti and Y. Zhou,
On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.
doi: 10.1007/s10801-017-0755-5. |
[27] |
S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214. |
[28] |
V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar |
[29] |
G. Marino, M. Montanucci and F. Zullo,
MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.
doi: 10.1016/j.laa.2020.01.004. |
[30] |
O. Polverino and F. Zullo,
On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.
doi: 10.1016/j.laa.2020.05.009. |
[31] |
J. Sheekey,
A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.
doi: 10.3934/amc.2016019. |
[32] |
J. Sheekey and G. Van de Voorde,
Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.
doi: 10.1007/s10623-019-00703-z. |
[33] |
M. Shi and P. Solé,
Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.
doi: 10.1007/s10623-019-00628-7. |
[34] |
M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007.
doi: 10.1090/surv/139. |
[35] |
B. Wu and Z. Liu,
Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003. |
[36] |
Y. Wu, Q. Yansheng and X. Shi,
At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.
doi: 10.1007/s10623-018-00595-5. |
[37] |
C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp.
doi: 10.1016/j.disc.2019.111800. |
[38] |
G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar |
conditions | references | |||
[12,20,21] | ||||
[31,25] | ||||
[7,30] | ||||
[10,29] | ||||
[3,37] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[7] |
conditions | references | |||
[12,20,21] | ||||
[31,25] | ||||
[7,30] | ||||
[10,29] | ||||
[3,37] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[7] |
[1] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
[2] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[3] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[4] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[5] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[6] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[7] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[8] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[9] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[10] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[11] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[12] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[13] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[14] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[15] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[16] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[17] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[18] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[19] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[20] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
2019 Impact Factor: 0.734
Tools
Article outline
Figures and Tables
[Back to Top]