\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new class of optimal wide-gap one-coincidence frequency-hopping sequence sets

  • * Corresponding author: Wenli Ren

    * Corresponding author: Wenli Ren 

This research is supported in part by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2018LA001, ZR2018LA003) and in part by the Program of Science and Technology of Shandong Province (Grant Nos. J16LI58, J18KB099)

Abstract Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • In this paper, we propose a new class of optimal one-coincidence FHS (OC-FHS) sets with respect to the Peng-Fan bounds, including prime sequence sets and HMC sequence sets as special cases. Thereafter, through investigating their properties, we determine all of the FHS distances in the OC-FHS set. Finally, for a given positive integer, we also propose a new class of wide-gap one-coincidence FHS (WG-OC-FHS) sets where the FHS gap is larger than the given positive integer. Moreover, such a WG-OC-FHS set is optimal with respect to the WG-Lempel-Greenberger bound and the WG-Peng-Fan bounds simultaneously.

    Mathematics Subject Classification: Primary: 94A55; Secondary: 94A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The optimal OC-FHS set $ \mathcal{B}^w $ with FHS distances $ d(B_k^w) $

    $ \mathcal{B}^w $ Frequencies $ d(B_k^w) $
    $ B_1^7 $ $ (21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) $ 7
    $ B_2^7 $ $ (42, 56, 70, 67, 64, 61, 58, 55, 52, 49, 63, 60, 57, 54, 51, 48, 45) $ 3
    $ B_3^7 $ $ (46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) $ 4
    $ B_4^7 $ $ (50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) $ 6
    $ B_5^7 $ $ (54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 48, 49, 50, 51, 52, 53) $ 1
    $ B_6^7 $ $ (41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) $ 8
    $ B_7^7 $ $ (45, 60, 58, 56, 54, 52, 67, 65, 63, 61, 59, 57, 55, 53, 51, 49, 47) $ 2
    $ B_8^7 $ $ (66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) $ 5
    $ B_9^7 $ $ (36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) $ 5
    $ B_{10}^{7} $ $ (57, 59, 61, 63, 65, 67, 52, 54, 56, 58, 60, 45, 47, 49, 51, 53, 55) $ 2
    $ B_{11}^7 $ $ (61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) $ 8
    $ B_{12}^7 $ $ (48, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49) $ 1
    $ B_{13}^7 $ $ (52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) $ 6
    $ B_{14}^7 $ $ (56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) $ 4
    $ B_{15}^7 $ $ (60, 63, 49, 52, 55, 58, 61, 64, 67, 70, 56, 42, 45, 48, 51, 54, 57) $ 3
    $ B_{16}^7 $ $ (81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) $ 7
     | Show Table
    DownLoad: CSV

    Table 2.  The optimal WG-OC-FHS set $ \mathcal{C}^7 $ with the FHS gap $ D = 3 $

    $ \mathcal{C}^7 $ Frequencies $ d(B_k^w) $
    $ B_1^7 $ $ (21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) $ 7
    $ B_3^7 $ $ (46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) $ 4
    $ B_4^7 $ $ (50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) $ 6
    $ B_6^7 $ $ (41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) $ 8
    $ B_8^7 $ $ (66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) $ 5
    $ B_9^7 $ $ (36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) $ 5
    $ B_{11}^7 $ $ (61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) $ 8
    $ B_{13}^7 $ $ (52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) $ 6
    $ B_{14}^7 $ $ (56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) $ 4
    $ B_{16}^7 $ $ (81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) $ 7
     | Show Table
    DownLoad: CSV
  • [1] Z. F. CaoG. N. Ge and Y. Miao, Combinatorial characterizations of one-coincidence frequency-hopping sequences, Des. Codes Cryptogr., 41 (2006), 177-184.  doi: 10.1007/s10623-006-9007-8.
    [2] W. D. Chen, Frequency hopping patterns with wide intervals, J. Systems Sci. Math. Sci., 3 (1983), 295-303. 
    [3] W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.
    [4] J. H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 56 (2010), 1685-1693.  doi: 10.1109/TIT.2010.2040888.
    [5] C. S. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.  doi: 10.1109/TIT.2008.926410.
    [6] C. S. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inform. Theory, 55 (2009), 3297-3304.  doi: 10.1109/TIT.2009.2021366.
    [7] C. S. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.
    [8] R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.
    [9] L. Fukshansky and A. A. Shaar, A new family of one-coincidence sets of sequences with dispersed elements for frequency-hopping CDMA systems, Adv. Math. Commun., 12 (2018), 181-188.  doi: 10.3934/amc.2018012.
    [10] G. N. GeY. Miao and Z. H. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.
    [11] G. N. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.  doi: 10.1016/j.jcta.2006.03.019.
    [12] L. GuanZ. LiJ. B. Si and R. Gao, Generation and characteristics analysis of cognitive-based high-performance wide-gap FH sequences, IEEE Trans. Veh. Technol., 64 (2015), 5056-5069.  doi: 10.1109/TVT.2014.2377299.
    [13] L. GuanZ. LiJ. B. Si and Y. C. Huang, Generation and characterization of orthogonal FH sequences for the congnitive network, Sci. China Inf. Sci., 58 (2015), 1-11. 
    [14] W. M. He and G. Feng, Comparison of two algorithms to generate wide gap FH code sequence, J. PLA Univ. Sci. Technol. (Nat. Sci.), 5 (2004), 29-33. 
    [15] P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, 34 (1988), 146-151.  doi: 10.1109/18.2616.
    [16] T. H. Lee, H. H. Jung and J. H. Chung, A new one-coincidence frquency-hopping sequene set of length $p^2-p$, Proc. ITW, (2018).
    [17] A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94.  doi: 10.1109/tit.1974.1055169.
    [18] B. Li, One-coincidence sequences with specified distance between adjacent symbols for frequency-hopping multiple access, IEEE Trans. Commun., 45 (1997), 408-410. 
    [19] P. H. LiC. L. FanY. Yang and Y. Wang, New bounds on wide-gap frequency-hopping sequences, IEEE Commun. Letter, 23 (2019), 1050-1053. 
    [20] X. H. Niu and C. P. Xing, New extension construction of optimal frequency hopping sequence sets, IEEE Trans. Inform. Theory, 65 (2019), 5846-5855.  doi: 10.1109/TIT.2019.2916362.
    [21] D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.
    [22] W. L. RenF. W. Fu and Z. C. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Crypt., 72 (2014), 423-434.  doi: 10.1007/s10623-012-9774-3.
    [23] W. L. RenF. W. FuF. Wang and J. Gao, A class of optimal one-coincidence frequency-hopping sequence sets with composite length, IEICE Trans. Fund. Elec., Commun. Compu. Sci., E100-A (2017), 2528-2533. 
    [24] A. A. Shaar and P. A. Davies, A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems, Proc. IEE-F, 131 (1984), 719-724. 
    [25] A. A. Shaar and P. A. Davies, Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing, Electronics Letters, 19 (1983), 888-890. 
    [26] M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, McGraw-Hill, Inc., New York, 2002.
    [27] P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503.  doi: 10.1109/18.681324.
    [28] H. WangY. ZhaoF. Shen and W. Sun, The design of wide interval FH sequences based on RS code, Appl. Sci. Technol., 37 (2010), 28-33. 
    [29] Y. YangX. H. TangU. Parampalli and D. Y. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inform. Theory, 57 (2011), 7605-7613.  doi: 10.1109/TIT.2011.2162571.
    [30] H. Q. Zhang, Design and performance analysis of frequency hopping sequences with given minimum gap, Proc. ICMMT (2010).
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(2707) PDF downloads(670) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return