doi: 10.3934/amc.2020135

Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, India

* Corresponding author: Maheshanand Bhaintwal

Received  August 2020 Published  March 2021

In this paper, we study the structure of duadic codes of an odd length $ n $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $, $ u^2 = 0 $, (more generally over $ \mathbb{Z}_{q}+u\mathbb{Z}_{q} $, $ u^2 = 0 $, where $ q = p^r $, $ p $ a prime and $ (n, p) = 1 $) using the discrete Fourier transform approach. We study these codes by considering them as a class of abelian codes. Some results related to self-duality and self-orthogonality of duadic codes are presented. Some conditions on the existence of self-dual augmented and extended duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $ are determined. We present a sufficient condition for abelian codes of the same length over $ \mathbb{Z}_4+u\mathbb{Z}_4 $ to have the same minimum Hamming distance. A new Gray map over $ \mathbb{Z}_4+u\mathbb{Z}_4 $ is defined, and it is shown that the Gray image of an abelian code over $ \mathbb{Z}_4+u\mathbb{Z}_4 $ is an abelian code over $ \mathbb{Z}_4 $. We have obtained five new linear codes of length $ 18 $ over $ \mathbb{Z}_4 $ from duadic codes of length $ 9 $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $ through the Gray map and a new map from $ \mathbb{Z}_4+u\mathbb{Z}_4 $ to $ \mathbb{Z}_4^2 $.

Citation: Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, doi: 10.3934/amc.2020135
References:
[1]

N. Aydin and T. Asamov, The Database of $\mathbb{Z}_4$ Codes, Available from: http://www.z4codes.info. Google Scholar

[2]

R. K. Bandi and M. Bhaintwal, A note on cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Discrete Mathematics, Algorithms and Applications, 8 (2016), 1650017. doi: 10.1142/S1793830916500178.  Google Scholar

[3]

R. K. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, In the Proceedings of IWSDA'15, (2015), 47-52. Google Scholar

[4]

S. D. Berman, Semisimple cyclic and abelian codes II, Kibernetika, 3 (1967), 17-23.  doi: 10.1007/BF01119999.  Google Scholar

[5]

Y. Cao and Q. Li, Cyclic codes of odd length over $\frac{\mathbb{Z}_u[u]}{\langle u^k \rangle}$, Cryptogr. Comm., 9 (2017), 599-624.  doi: 10.1007/s12095-016-0204-7.  Google Scholar

[6]

J. Gao, F. W. Fu, L. Xiao and R. K. Bandi, Some results on cyclic codes over $\mathbb{Z}_q+u\mathbb{Z}_q$, Discrete Mathematics, Algorithms and Applications, 7 (2015), 1550058. doi: 10.1142/S1793830915500585.  Google Scholar

[7]

A. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$ linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[8]

P. Langevin and P. Solé, Duadic $\mathbb{Z}_4$-codes, Finite Fields Appl., 6 (2000), 309-326.  doi: 10.1006/ffta.2000.0285.  Google Scholar

[9]

S. Ling and P. Solé, Duadic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Algebra Engrg. Comm. Comput., 12 (2000), 365-389.  doi: 10.1007/s002000100079.  Google Scholar

[10]

S. Ling and P. Solé, Duadic codes over $\mathbb{Z}_2k$, IEEE Trans. Inform. Theory, 47 (2000), 1581-1588.  doi: 10.1109/18.923740.  Google Scholar

[11]

R. Luo and U. Parampalli, Self-dual cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, In the Proceedings of IWSDA'15, (2015), 57-61. Google Scholar

[12]

F. J. MacWilliams, Binary codes which are ideals in the group algebra of an Abelian group, Bell Syst. Tech. J., 49 (1970), 987-1011.  doi: 10.1002/j.1538-7305.1970.tb01812.x.  Google Scholar

[13]

B. S. Rajan and M. U. Siddiqui, Transform domain characterzation of cyclic codes over $\mathbb{Z}_m$, Appl. Algebra Engrg. Comm. Comput., 5 (1994), 261-275.  doi: 10.1007/BF01225641.  Google Scholar

[14]

B. S. Rajan and M. U. Siddiqui, A generalized DFT for Abelian codes over $\mathbb{Z}_m$, IEEE Trans. Inform. Theory, 40 (1994), 2082-2090.  doi: 10.1109/18.340486.  Google Scholar

[15]

M. ShiL. QianL. Sok and P. Solé, On constacyclic codes over $\frac{\mathbb{Z}_4[u]}{\langle u^2-1 \rangle}$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[16]

M. ShiD. WangJ. Gao and B. Wu, Construction of one-Gray weight codes and two-Gray weight codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, J. Syst. Sci. Complex, 29 (2016), 1472-1484.  doi: 10.1007/s11424-016-5286-y.  Google Scholar

[17]

P. Solé, Codes over Rings, Proceedings of the Cimpa Summer School, Ankara, Turkey, 2008, 18-29. doi: 10.1142/7140.  Google Scholar

[18]

E. Speigel, Codes over $\mathbb{Z}_m$, Inform. Control, 35 (1977), 48-51.  doi: 10.1016/S0019-9958(77)90526-5.  Google Scholar

[19]

Z. X. Wan, Finite Fields and Galois Rings, World Scientific Pub. Co. Inc., Singapore, 2012.  Google Scholar

[20]

B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27, 24-40, (2014) doi: 10.1016/j.ffa.2013.12.007.  Google Scholar

[21]

B. Yildiz and N. Aydin, On cyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ and their $\mathbb{Z}_4$-images, Int. J. Inf. Coding Theory, 2 (2014), 226-237.  doi: 10.1504/IJICOT.2014.066107.  Google Scholar

[22]

http://magma.maths.usyd.edu.au/magma/. Google Scholar

show all references

References:
[1]

N. Aydin and T. Asamov, The Database of $\mathbb{Z}_4$ Codes, Available from: http://www.z4codes.info. Google Scholar

[2]

R. K. Bandi and M. Bhaintwal, A note on cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Discrete Mathematics, Algorithms and Applications, 8 (2016), 1650017. doi: 10.1142/S1793830916500178.  Google Scholar

[3]

R. K. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, In the Proceedings of IWSDA'15, (2015), 47-52. Google Scholar

[4]

S. D. Berman, Semisimple cyclic and abelian codes II, Kibernetika, 3 (1967), 17-23.  doi: 10.1007/BF01119999.  Google Scholar

[5]

Y. Cao and Q. Li, Cyclic codes of odd length over $\frac{\mathbb{Z}_u[u]}{\langle u^k \rangle}$, Cryptogr. Comm., 9 (2017), 599-624.  doi: 10.1007/s12095-016-0204-7.  Google Scholar

[6]

J. Gao, F. W. Fu, L. Xiao and R. K. Bandi, Some results on cyclic codes over $\mathbb{Z}_q+u\mathbb{Z}_q$, Discrete Mathematics, Algorithms and Applications, 7 (2015), 1550058. doi: 10.1142/S1793830915500585.  Google Scholar

[7]

A. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$ linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[8]

P. Langevin and P. Solé, Duadic $\mathbb{Z}_4$-codes, Finite Fields Appl., 6 (2000), 309-326.  doi: 10.1006/ffta.2000.0285.  Google Scholar

[9]

S. Ling and P. Solé, Duadic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Algebra Engrg. Comm. Comput., 12 (2000), 365-389.  doi: 10.1007/s002000100079.  Google Scholar

[10]

S. Ling and P. Solé, Duadic codes over $\mathbb{Z}_2k$, IEEE Trans. Inform. Theory, 47 (2000), 1581-1588.  doi: 10.1109/18.923740.  Google Scholar

[11]

R. Luo and U. Parampalli, Self-dual cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, In the Proceedings of IWSDA'15, (2015), 57-61. Google Scholar

[12]

F. J. MacWilliams, Binary codes which are ideals in the group algebra of an Abelian group, Bell Syst. Tech. J., 49 (1970), 987-1011.  doi: 10.1002/j.1538-7305.1970.tb01812.x.  Google Scholar

[13]

B. S. Rajan and M. U. Siddiqui, Transform domain characterzation of cyclic codes over $\mathbb{Z}_m$, Appl. Algebra Engrg. Comm. Comput., 5 (1994), 261-275.  doi: 10.1007/BF01225641.  Google Scholar

[14]

B. S. Rajan and M. U. Siddiqui, A generalized DFT for Abelian codes over $\mathbb{Z}_m$, IEEE Trans. Inform. Theory, 40 (1994), 2082-2090.  doi: 10.1109/18.340486.  Google Scholar

[15]

M. ShiL. QianL. Sok and P. Solé, On constacyclic codes over $\frac{\mathbb{Z}_4[u]}{\langle u^2-1 \rangle}$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[16]

M. ShiD. WangJ. Gao and B. Wu, Construction of one-Gray weight codes and two-Gray weight codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, J. Syst. Sci. Complex, 29 (2016), 1472-1484.  doi: 10.1007/s11424-016-5286-y.  Google Scholar

[17]

P. Solé, Codes over Rings, Proceedings of the Cimpa Summer School, Ankara, Turkey, 2008, 18-29. doi: 10.1142/7140.  Google Scholar

[18]

E. Speigel, Codes over $\mathbb{Z}_m$, Inform. Control, 35 (1977), 48-51.  doi: 10.1016/S0019-9958(77)90526-5.  Google Scholar

[19]

Z. X. Wan, Finite Fields and Galois Rings, World Scientific Pub. Co. Inc., Singapore, 2012.  Google Scholar

[20]

B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27, 24-40, (2014) doi: 10.1016/j.ffa.2013.12.007.  Google Scholar

[21]

B. Yildiz and N. Aydin, On cyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ and their $\mathbb{Z}_4$-images, Int. J. Inf. Coding Theory, 2 (2014), 226-237.  doi: 10.1504/IJICOT.2014.066107.  Google Scholar

[22]

http://magma.maths.usyd.edu.au/magma/. Google Scholar

Table 1.  Duadic codes of $ R(\mathbb{Z}_3\times \mathbb{Z}_3) $
$ \text{Duadic code}\; C $ $ |C| $ $ \psi(C) $ $ \phi(C) $
$ 2-1-0-1-0 $ $ 2^{18} $ $ [18, 4^82^2, 4 ]^* $ $ [18, 4^42^5, 8]^{**} $
$ u-1-0-1-0 $ $ 2^{18} $ $ [18, 4^92^0, 4 ] $ $ [18, 4^42^5, 6] $
$ (2+u)-1-0-1-0 $ $ 2^{18} $ $ [18, 4^92^0, 4 ] $ $ [18, 4^42^5, 6] $
$ 2-2-2-2-2 $ $ 2^{18} $ $ [18,4^02^{18},2 ]^* $ $ [18, 4^02^9, 4]^\dagger $
$ (2+u)-2-2-2-2 $ $ 2^{18} $ $ [18, 4^12^{16}, 4]^* $ $ [18, 4^02^9, 8]^{\dagger **} $
$ u-2-2-2-2 $ $ 2^{18} $ $ [18, 4^12^{16}, 4] $ $ [18, 4^02^9, 8]^{\dagger} $
$ 2-2-u-u-2 $ $ 2^{18} $ $ [18, 4^42^{10},4 ]^{**} $ $ [18, 4^02^9,8] $
$ u-2-u-u-2 $ $ 2^{18} $ $ [18, 4^52^8, 4]^{**} $ $ [18, 4^02^9,6]^\dagger $
$ (2+u)-2-u-u-2 $ $ 2^{18} $ $ [18,4^5 2^8, 4 ] $ $ [18, 4^02^9,8] $
$ (2+u) - (2+u) -0-1- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^22^5, 6]^{**} $
$ (2+u) - (2+u) -u-u- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^02^9,6] $
$ (2+u) - (2+u) -2-2- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^02^9,6] $
$ (2+u) - (2+u) -(2+u) - (2+u) - (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 2 ] $ $ [18, 4^02^9,2]^\dagger $
$ u - (2+u) -2-2- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^02^9,8] $
$ \text{Duadic code}\; C $ $ |C| $ $ \psi(C) $ $ \phi(C) $
$ 2-1-0-1-0 $ $ 2^{18} $ $ [18, 4^82^2, 4 ]^* $ $ [18, 4^42^5, 8]^{**} $
$ u-1-0-1-0 $ $ 2^{18} $ $ [18, 4^92^0, 4 ] $ $ [18, 4^42^5, 6] $
$ (2+u)-1-0-1-0 $ $ 2^{18} $ $ [18, 4^92^0, 4 ] $ $ [18, 4^42^5, 6] $
$ 2-2-2-2-2 $ $ 2^{18} $ $ [18,4^02^{18},2 ]^* $ $ [18, 4^02^9, 4]^\dagger $
$ (2+u)-2-2-2-2 $ $ 2^{18} $ $ [18, 4^12^{16}, 4]^* $ $ [18, 4^02^9, 8]^{\dagger **} $
$ u-2-2-2-2 $ $ 2^{18} $ $ [18, 4^12^{16}, 4] $ $ [18, 4^02^9, 8]^{\dagger} $
$ 2-2-u-u-2 $ $ 2^{18} $ $ [18, 4^42^{10},4 ]^{**} $ $ [18, 4^02^9,8] $
$ u-2-u-u-2 $ $ 2^{18} $ $ [18, 4^52^8, 4]^{**} $ $ [18, 4^02^9,6]^\dagger $
$ (2+u)-2-u-u-2 $ $ 2^{18} $ $ [18,4^5 2^8, 4 ] $ $ [18, 4^02^9,8] $
$ (2+u) - (2+u) -0-1- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^22^5, 6]^{**} $
$ (2+u) - (2+u) -u-u- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^02^9,6] $
$ (2+u) - (2+u) -2-2- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^02^9,6] $
$ (2+u) - (2+u) -(2+u) - (2+u) - (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 2 ] $ $ [18, 4^02^9,2]^\dagger $
$ u - (2+u) -2-2- (2+u) $ $ 2^{18} $ $ [18, 4^9 2^0, 4 ] $ $ [18, 4^02^9,8] $
[1]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[2]

Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021007

[3]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[4]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[7]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[8]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[9]

Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078

[10]

Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072

[11]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[12]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[13]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[14]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[15]

Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021056

[16]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[17]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[18]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[19]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[20]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (64)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]