A generalized Stirling numbers of the second kind $ S_{a,b}\left(p,k\right) $, involved in the expansion $ \left(an+b\right)^{p} = \sum_{k = 0}^{p}k!S_{a,b}\left(p,k\right) \binom{n}{k} $, where $ a \neq 0, b $ are complex numbers, have studied in [
Citation: |
[1] |
L. Carlitz, Problem 795, Math. Mag., 44 (1971), 107.
![]() |
[2] |
L. Comtet, Advanced Combinatorics, Reidel, 1974.
![]() ![]() |
[3] |
H. W. Gould, Tables of Combinatorial Identities, Edited and compiled by Prof. Jocelyn Quaintance, 2010. Available from: https://math.wvu.edu/~hgould/.
![]() |
[4] |
H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79 (1972), 44-51.
doi: 10.1080/00029890.1972.11992980.![]() ![]() ![]() |
[5] |
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, 2$^nd$ edition, Addison-Wesley, 1994.
![]() ![]() |
[6] |
B. N. Guo, I. Mezö and F. Qi, An explicit formula for Bernoulli polynomials in terms of $r$-Stirling numbers of the second kind, Rocky Mountain J. Math., 46 (2016), 1919-1923.
doi: 10.1216/RMJ-2016-46-6-1919.![]() ![]() ![]() |
[7] |
B. N. Guo and F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Ana. Num. Theor., 3 (2015), 27-30.
![]() |
[8] |
B. C. Kellner, Identities between polynomials related to Stirling and harmonic numbers, Integers, 14 (2014), 54-76.
![]() ![]() |
[9] |
B. Mazur, Bernoulli Numbers and the Unity of Mathematics, Available from: http://people.math.harvard.edu/ mazur/papers/slides.Bartlett.pdf
![]() |
[10] |
M. Merca, A new connection between $r$-Whitney numbers and Bernoulli polynomials, Integral Transforms Spec. Funct., 25 (2014), 937-942.
doi: 10.1080/10652469.2014.940580.![]() ![]() ![]() |
[11] |
M. Merca, A connection between Jacobi-Stirling numbers and Bernoulli polynomials, J. Number Theory, 151 (2015), 223-229.
doi: 10.1016/j.jnt.2014.12.024.![]() ![]() ![]() |
[12] |
M. Merca, Connections between central factorial numbers and Bernoulli polynomials, Period. Math. Hungar., 73 (2016), 259-264.
doi: 10.1007/s10998-016-0140-5.![]() ![]() ![]() |
[13] |
M. Merca, On lacunary recurrences with gaps of length four and eight for the Bernoulli numbers, Bull. Korean Math. Soc., 56 (2019), 491-499.
doi: 10.4134/BKMS.b180347.![]() ![]() ![]() |
[14] |
M. Merca, Bernoulli numbers and symmetric functions, Rev. R. Acad. Cienc. Exactas F$\acute{{i}}$s. Nat. (Esp.), Serie A, Matem$\acute{{a}}$ticas, 114 (2020), 20–36.
doi: 10.1007/s13398-019-00774-6.![]() ![]() ![]() |
[15] |
I. Mező, A new formula for the Bernoulli polynomials, Results Math., 58 (2010), 329-335.
doi: 10.1007/s00025-010-0039-z.![]() ![]() ![]() |
[16] |
C. Pita-Ruiz, Generalized stirling Numbers I, preprint, arXiv: 1803.05953v1.
![]() |
[17] |
C. Pita-Ruiz, Carlitz-Type and other Bernoulli Identities, J. Integer Seq., 19 (2016), 27 pp.
![]() ![]() |
[18] |
F. A. Shiha, An explicit formula for Bernoulli polynomials with a $q$ parameter in terms of $r$-Whitney numbers, J. Ana. Num. Theor., 6 (2018), 47-50.
![]() |
[19] |
J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94 (1883), 203-232.
doi: 10.1515/crll.1883.94.203.![]() ![]() ![]() |