doi: 10.3934/amc.2021007

Combining subspace codes

1. 

Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Contrada Macchia Romana, 85100, Potenza, Italy

2. 

Mathematisches Institut, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

3. 

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia 21, 80126, Napoli, Italy

4. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy

Received  November 2020 Revised  February 2021 Published  April 2021

Fund Project: The work of the first, third and fourth author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA{ INdAM)

In the context of constant-dimension subspace codes, an important problem is to determine the largest possible size $ A_q(n, d; k) $ of codes whose codewords are $ k $-subspaces of $ {\mathbb F}_q^n $ with minimum subspace distance $ d $. Here in order to obtain improved constructions, we investigate several approaches to combine subspace codes. This allow us to present improvements on the lower bounds for constant-dimension subspace codes for many parameters, including $ A_q(10, 4; 5) $, $ A_q(12, 4; 4) $, $ A_q(12, 6, 6) $ and $ A_q(16, 4; 4) $.

Citation: Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2021007
References:
[1]

J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z., 60 (1954), 156-186.  doi: 10.1007/BF01187370.  Google Scholar

[2]

A. Beutelspacher, On parallelisms in finite projective spaces, Geometriae Dedicata, 3 (1974), 35-40.  doi: 10.1007/BF00181359.  Google Scholar

[3]

M. BraunP. R. J. Östergård and A. Wassermann, New lower bounds for binary constant-dimension subspace codes, Exp. Math., 27 (2018), 179-183.  doi: 10.1080/10586458.2016.1239145.  Google Scholar

[4]

H. ChenX. HeJ. Weng and L. Xu, New constructions of subspace codes using subsets of MRD codes in several blocks, IEEE Trans. Inform. Theory, 66 (2020), 5317-5321.  doi: 10.1109/TIT.2020.2975776.  Google Scholar

[5]

A. Cossidente, G. Marino and F. Pavese, Subspace code constructions, Ric. di Mat., (2020). to appear. doi: 10.1007/s11587-020-00521-9.  Google Scholar

[6]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531.  doi: 10.1007/s10623-014-0018-6.  Google Scholar

[7]

A. Cossidente and F. Pavese, Veronese subspace codes, Des. Codes Cryptogr., 81 (2016), 445-457.  doi: 10.1007/s10623-015-0166-3.  Google Scholar

[8]

A. Cossidente and F. Pavese, Subspace codes in ${\rm{PG(2N - 1, Q)}}$, Combinatorica, 37 (2017), 1073-1095.  doi: 10.1007/s00493-016-3354-5.  Google Scholar

[9]

A. Cossidente, F. Pavese and L. Storme, Geometrical aspects of subspace codes, in Network Coding and Subspace Designs, Springer, Cham, (2018), 107-129.  Google Scholar

[10]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[11]

R. H. F. Denniston, Some packings of projective spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 52 (1972), 36-40.   Google Scholar

[12]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[13]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017.  doi: 10.1109/TIT.2012.2220119.  Google Scholar

[14]

P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. Combin., 6 (1985), 317-326.  doi: 10.1016/S0195-6698(85)80045-7.  Google Scholar

[15]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory, 56 (2010), 3207-3216.  doi: 10.1109/TIT.2010.2048447.  Google Scholar

[16]

H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Adv. Math. Commun., 10 (2016), 525-540.  doi: 10.3934/amc.2016023.  Google Scholar

[17]

X. He, Construction of constant dimension code from two parallel versions of linkage construction, IEEE Communi. Lett., 24 (2020), 2392-2395.   Google Scholar

[18]

X. He and Y. Chen, Construction of constant dimension codes from several parallel lifted MRD code, preprint, arXiv: 1911.00154. Google Scholar

[19]

D. Heinlein, New LMRD code bounds for constant dimension codes and improved constructions, IEEE Trans. Inform. Theory, 65 (2019), 4822-4830.  doi: 10.1109/TIT.2019.2905002.  Google Scholar

[20]

D. Heinlein, Generalized linkage construction for constant-dimension codes, IEEE Trans. Inform. Theory, 67 (2020), 705-715.   Google Scholar

[21]

D. HeinleinT. HonoldM. KiermaierS. Kurz and A. Wassermann, Classifying optimal binary subspace codes of length $8$, constant dimension $4$ and minimum distance $6$, Des. Codes Cryptogr., 87 (2019), 375-391.  doi: 10.1007/s10623-018-0544-8.  Google Scholar

[22]

D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, preprint, arXiv: 1601.02864. Google Scholar

[23]

D. Heinlein and S. Kurz, Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound, in Coding Theory and Applications : 5th International Castle Meeting, ICMCTA 2017, Vihula, Estonia, August 28-31, 2017, Proceedings, vol. 10495 of Lecture Notes in Computer Science, Springer International Publishing, Cham, (2017), 163-191. doi: 10.1007/978-3-319-66278-7_15.  Google Scholar

[24]

D. Heinlein and S. Kurz, Coset construction for subspace codes, IEEE Trans. Inform. Theory, 63 (2017), 7651-7660.  doi: 10.1109/TIT.2017.2753822.  Google Scholar

[25]

T. Honold and M. Kiermaier, On putative $q$-analogues of the Fano plane and related combinatorial structures, in Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Armin Leutbecher's 80th Birthday, World Scientific, (2016), 141-175.  Google Scholar

[26]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, Topics in Finite Fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 157-176. doi: 10.1090/conm/632/12627.  Google Scholar

[27]

T. Honold, M. Kiermaier and S. Kurz, Partial spreads and vector space partitions, in Network Coding and Subspace Designs, Springer, Cham, (2018), 131-170.  Google Scholar

[28]

A.-L. Horlemann-Trautmann and J. Rosenthal, Constructions of constant dimension codes, in Network Coding and Subspace Designs, Springer, Cham, (2018), 25-42.  Google Scholar

[29]

M. Kiermaier and S. Kurz, On the lengths of divisible codes, IEEE Trans. Inform. Theory, 66 (2020), 4051-4060.  doi: 10.1109/TIT.2020.2968832.  Google Scholar

[30]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[31]

A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in Mathematical methods in computer science, Springer, (2008), 31-42. doi: 10.1007/978-3-540-89994-5_4.  Google Scholar

[32]

S. Kurz, Packing vector spaces into vector spaces, Australas. J. Combin., 68 (2017), 122-130.   Google Scholar

[33]

S. Kurz, A note on the linkage construction for constant dimension codes, preprint, arXiv: 1906.09780. Google Scholar

[34]

S. Kurz, Subspaces intersecting in at most a point, Des. Codes Cryptogr., 88 (2020), 595-599.  doi: 10.1007/s10623-019-00699-6.  Google Scholar

[35]

S. LiuY. Chang and T. Feng, Parallel multilevel construction for constant dimension codes, IEEE Trans. Inform. Theory, 66 (2020), 6884-6897.  doi: 10.1109/TIT.2020.3004315.  Google Scholar

[36]

E. L. Năstase and P. A. Sissokho, The maximum size of a partial spread in a finite projective space, J. Combin. Theory Ser. A, 152 (2017), 353-362.  doi: 10.1016/j.jcta.2017.06.012.  Google Scholar

[37]

B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.  doi: 10.1007/BF02410047.  Google Scholar

[38]

J. Sheekey, MRD codes: Constructions and connections, in Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, vol. 23 of Radon Series on Computational and Applied Mathematics, De Gruyter, Berlin, 2019. doi: 10.1515/9783110642094-013.  Google Scholar

[39]

N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, 61 (2015), 3937-3953.  doi: 10.1109/TIT.2015.2435743.  Google Scholar

[40]

D. SilvaF. R. Kschischang and R. Köetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[41]

H. WangC. Xing and R. Safavi-Naini, Linear authentication codes: Bounds and constructions, IEEE Trans. Inform. Theory, 49 (2003), 866-872.  doi: 10.1109/TIT.2003.809567.  Google Scholar

[42]

S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes, Des. Codes Cryptogr., 50 (2009), 163-172.  doi: 10.1007/s10623-008-9221-7.  Google Scholar

[43]

L. Xu and H. Chen, New constant-dimension subspace codes from maximum rank distance codes, IEEE Trans. Inform. Theory, 64 (2018), 6315-6319.  doi: 10.1109/TIT.2018.2839596.  Google Scholar

show all references

References:
[1]

J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z., 60 (1954), 156-186.  doi: 10.1007/BF01187370.  Google Scholar

[2]

A. Beutelspacher, On parallelisms in finite projective spaces, Geometriae Dedicata, 3 (1974), 35-40.  doi: 10.1007/BF00181359.  Google Scholar

[3]

M. BraunP. R. J. Östergård and A. Wassermann, New lower bounds for binary constant-dimension subspace codes, Exp. Math., 27 (2018), 179-183.  doi: 10.1080/10586458.2016.1239145.  Google Scholar

[4]

H. ChenX. HeJ. Weng and L. Xu, New constructions of subspace codes using subsets of MRD codes in several blocks, IEEE Trans. Inform. Theory, 66 (2020), 5317-5321.  doi: 10.1109/TIT.2020.2975776.  Google Scholar

[5]

A. Cossidente, G. Marino and F. Pavese, Subspace code constructions, Ric. di Mat., (2020). to appear. doi: 10.1007/s11587-020-00521-9.  Google Scholar

[6]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531.  doi: 10.1007/s10623-014-0018-6.  Google Scholar

[7]

A. Cossidente and F. Pavese, Veronese subspace codes, Des. Codes Cryptogr., 81 (2016), 445-457.  doi: 10.1007/s10623-015-0166-3.  Google Scholar

[8]

A. Cossidente and F. Pavese, Subspace codes in ${\rm{PG(2N - 1, Q)}}$, Combinatorica, 37 (2017), 1073-1095.  doi: 10.1007/s00493-016-3354-5.  Google Scholar

[9]

A. Cossidente, F. Pavese and L. Storme, Geometrical aspects of subspace codes, in Network Coding and Subspace Designs, Springer, Cham, (2018), 107-129.  Google Scholar

[10]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[11]

R. H. F. Denniston, Some packings of projective spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 52 (1972), 36-40.   Google Scholar

[12]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[13]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017.  doi: 10.1109/TIT.2012.2220119.  Google Scholar

[14]

P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. Combin., 6 (1985), 317-326.  doi: 10.1016/S0195-6698(85)80045-7.  Google Scholar

[15]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory, 56 (2010), 3207-3216.  doi: 10.1109/TIT.2010.2048447.  Google Scholar

[16]

H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Adv. Math. Commun., 10 (2016), 525-540.  doi: 10.3934/amc.2016023.  Google Scholar

[17]

X. He, Construction of constant dimension code from two parallel versions of linkage construction, IEEE Communi. Lett., 24 (2020), 2392-2395.   Google Scholar

[18]

X. He and Y. Chen, Construction of constant dimension codes from several parallel lifted MRD code, preprint, arXiv: 1911.00154. Google Scholar

[19]

D. Heinlein, New LMRD code bounds for constant dimension codes and improved constructions, IEEE Trans. Inform. Theory, 65 (2019), 4822-4830.  doi: 10.1109/TIT.2019.2905002.  Google Scholar

[20]

D. Heinlein, Generalized linkage construction for constant-dimension codes, IEEE Trans. Inform. Theory, 67 (2020), 705-715.   Google Scholar

[21]

D. HeinleinT. HonoldM. KiermaierS. Kurz and A. Wassermann, Classifying optimal binary subspace codes of length $8$, constant dimension $4$ and minimum distance $6$, Des. Codes Cryptogr., 87 (2019), 375-391.  doi: 10.1007/s10623-018-0544-8.  Google Scholar

[22]

D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, preprint, arXiv: 1601.02864. Google Scholar

[23]

D. Heinlein and S. Kurz, Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound, in Coding Theory and Applications : 5th International Castle Meeting, ICMCTA 2017, Vihula, Estonia, August 28-31, 2017, Proceedings, vol. 10495 of Lecture Notes in Computer Science, Springer International Publishing, Cham, (2017), 163-191. doi: 10.1007/978-3-319-66278-7_15.  Google Scholar

[24]

D. Heinlein and S. Kurz, Coset construction for subspace codes, IEEE Trans. Inform. Theory, 63 (2017), 7651-7660.  doi: 10.1109/TIT.2017.2753822.  Google Scholar

[25]

T. Honold and M. Kiermaier, On putative $q$-analogues of the Fano plane and related combinatorial structures, in Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Armin Leutbecher's 80th Birthday, World Scientific, (2016), 141-175.  Google Scholar

[26]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, Topics in Finite Fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 157-176. doi: 10.1090/conm/632/12627.  Google Scholar

[27]

T. Honold, M. Kiermaier and S. Kurz, Partial spreads and vector space partitions, in Network Coding and Subspace Designs, Springer, Cham, (2018), 131-170.  Google Scholar

[28]

A.-L. Horlemann-Trautmann and J. Rosenthal, Constructions of constant dimension codes, in Network Coding and Subspace Designs, Springer, Cham, (2018), 25-42.  Google Scholar

[29]

M. Kiermaier and S. Kurz, On the lengths of divisible codes, IEEE Trans. Inform. Theory, 66 (2020), 4051-4060.  doi: 10.1109/TIT.2020.2968832.  Google Scholar

[30]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[31]

A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in Mathematical methods in computer science, Springer, (2008), 31-42. doi: 10.1007/978-3-540-89994-5_4.  Google Scholar

[32]

S. Kurz, Packing vector spaces into vector spaces, Australas. J. Combin., 68 (2017), 122-130.   Google Scholar

[33]

S. Kurz, A note on the linkage construction for constant dimension codes, preprint, arXiv: 1906.09780. Google Scholar

[34]

S. Kurz, Subspaces intersecting in at most a point, Des. Codes Cryptogr., 88 (2020), 595-599.  doi: 10.1007/s10623-019-00699-6.  Google Scholar

[35]

S. LiuY. Chang and T. Feng, Parallel multilevel construction for constant dimension codes, IEEE Trans. Inform. Theory, 66 (2020), 6884-6897.  doi: 10.1109/TIT.2020.3004315.  Google Scholar

[36]

E. L. Năstase and P. A. Sissokho, The maximum size of a partial spread in a finite projective space, J. Combin. Theory Ser. A, 152 (2017), 353-362.  doi: 10.1016/j.jcta.2017.06.012.  Google Scholar

[37]

B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.  doi: 10.1007/BF02410047.  Google Scholar

[38]

J. Sheekey, MRD codes: Constructions and connections, in Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, vol. 23 of Radon Series on Computational and Applied Mathematics, De Gruyter, Berlin, 2019. doi: 10.1515/9783110642094-013.  Google Scholar

[39]

N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, 61 (2015), 3937-3953.  doi: 10.1109/TIT.2015.2435743.  Google Scholar

[40]

D. SilvaF. R. Kschischang and R. Köetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[41]

H. WangC. Xing and R. Safavi-Naini, Linear authentication codes: Bounds and constructions, IEEE Trans. Inform. Theory, 49 (2003), 866-872.  doi: 10.1109/TIT.2003.809567.  Google Scholar

[42]

S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes, Des. Codes Cryptogr., 50 (2009), 163-172.  doi: 10.1007/s10623-008-9221-7.  Google Scholar

[43]

L. Xu and H. Chen, New constant-dimension subspace codes from maximum rank distance codes, IEEE Trans. Inform. Theory, 64 (2018), 6315-6319.  doi: 10.1109/TIT.2018.2839596.  Google Scholar

[1]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[2]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[3]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[4]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

[5]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[6]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003

[7]

Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026

[8]

Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021044

[9]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[10]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[11]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[12]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[13]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[14]

Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021037

[15]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[18]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[19]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[20]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 0.734

Article outline

[Back to Top]