doi: 10.3934/amc.2021010
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Partial direct product difference sets and almost quaternary sequences

1. 

Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey

2. 

Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

* Corresponding author

This paper is a part of Büşra Özden's PhD thesis

Received  May 2020 Revised  January 2021 Early access May 2021

In this paper, we study the $ m $-ary sequences with (non-consecutive) two zero-symbols and at most two distinct autocorrelation coefficients, which are known as almost $ m $-ary nearly perfect sequences. We show that these sequences are equivalent to $ \ell $-partial direct product difference sets (PDPDS), then we extend known results on the sequences with two consecutive zero-symbols to non-consecutive case. Next, we study the notion of multipliers and orbit combination for $ \ell $-PDPDS. Finally, we present two construction methods for a family of almost quaternary sequences with at most two out-of-phase autocorrelation coefficients.

Citation: Büşra Özden, Oǧuz Yayla. Partial direct product difference sets and almost quaternary sequences. Advances in Mathematics of Communications, doi: 10.3934/amc.2021010
References:
[1]

K. T. ArasuJ. F. Dillon and K. J. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Transactions on Information Theory, 61 (2015), 3276-3304.  doi: 10.1109/TIT.2015.2418204.

[2]

K. T. ArasuC. DingT. HellesethP. V. Kumar and H. M. Martinsen, Almost difference sets and their sequences with optimal autocorrelation, IEEE Transactions on Information Theory, 47 (2001), 2934-2943.  doi: 10.1109/18.959271.

[3] T. BethD. Jungnickel and H. Lenz, Design Theory: Volume 1, Cambridge University Press, 1999. 
[4]

Y. Cai and C. Ding, Binary sequences with optimal autocorrelation, Theoretical Computer Science, 410 (2009), 2316-2322.  doi: 10.1016/j.tcs.2009.02.021.

[5]

A. Çeșmelioǧlu and O. Olmez, Graphs of vectorial plateaued functions as difference sets, Finite Fields and Their Applications, 71 (2021), 101795. doi: 10.1016/j.ffa.2020.101795.

[6]

Y. M. Chee, Y. Tan and Y. Zhou, Almost p-ary perfect sequences, in International Conference on Sequences and Their Applications doi: 10.1007/978-3-642-15874-2_34.

[7]

I. Chih-Lin and R. D. Gitlin, Multi-code CDMA wireless personal communications networks, Proceedings IEEE International Conference on Communications ICC'95, 2 (1995), 1060-1064.  doi: 10.1109/ICC.1995.524263.

[8] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, CRC press, 2006.  doi: 10.1201/9781420049954.
[9]

L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, American Journal of Mathematics, 57 (1935), 391-424.  doi: 10.2307/2371217.

[10]

J. F. Dillon and H. Dobbertin, New cyclic difference sets with singer parameters, Finite Fields and Their Applications, 10 (2004), 342-389.  doi: 10.1016/j.ffa.2003.09.003.

[11]

C. DingT. Helleseth and K. Y. Lam, Several classes of binary sequences with three-level autocorrelation, IEEE Transactions on Information Theory, 45 (1999), 2606-2612.  doi: 10.1109/18.796414.

[12]

C. DingT. Helleseth and H. Martinsen, New families of binary sequences with optimal three-level autocorrelation, IEEE Transactions on Information Theory, 47 (2001), 428-433.  doi: 10.1109/18.904555.

[13]

V. E. Gantmakher and M. V. Zaleshin, Almost six-phase sequences with perfect periodic autocorrelation function, in International Conference on Sequences and Their Applications doi: 10.1007/978-3-319-12325-7_8.

[14] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511546907.
[15]

B. GordonW. Mills and L. Welch, Some new difference sets, Canadian Journal of Mathematics, 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2.

[16]

M. Hall, A survey of difference sets, Proceedings of the American Mathematical Society, 7 (1956), 975-986.  doi: 10.1090/S0002-9939-1956-0082502-7.

[17]

T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Transactions on Information Theory, 48 (2002), 2868-2872.  doi: 10.1109/TIT.2002.804052.

[18]

T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of coding theory, Vol. I, II

[19]

T. HellesethP. V. Kumar and H. Martinsen, A new family of ternary sequences with ideal two-level autocorrelation function, Des. Codes Cryptogr., 23 (2001), 157-166.  doi: 10.1023/A:1011208514883.

[20]

J. R. HollonM. Rangaswamy and P. Setlur, New families of optimal high-energy ternary sequences having good correlation properties, Journal of Algebraic Combinatorics, 50 (2019), 1-38.  doi: 10.1007/s10801-018-0835-1.

[21]

H. HuS. ShaoG. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Transactions on Information Theory, 60 (2014), 5054-5064.  doi: 10.1109/TIT.2014.2327625.

[22]

D. Jungnickel and A. Pott, Perfect and almost perfect sequences, Discrete Applied Mathematics, 95 (1999), 331-359.  doi: 10.1016/S0166-218X(99)00085-2.

[23]

Y.-S. KimJ.-S. ChungJ.-S. No and H. Chung, On the autocorrelation distributions of Sidel'nikov sequences, IEEE Transactions on Information Theory, 51 (2005), 3303-3307.  doi: 10.1109/TIT.2005.853310.

[24]

Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New quaternary sequences with optimal autocorrelation, ISIT, (2009), 286–289.

[25]

Y.-S. KimJ.-W. JangS.-H. Kim and J.-S. No, New quaternary sequences with ideal autocorrelation constructed from Legendre sequences, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96 (2013), 1872-1882.  doi: 10.1587/transfun.E96.A.1872.

[26]

P. V. KumarR. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, Journal of Combinatorial Theory, Series A, 40 (1985), 90-107.  doi: 10.1016/0097-3165(85)90049-4.

[27]

A. LempelM. Cohn and W. Eastman, A class of balanced binary sequences with optimal autocorrelation properties, IEEE Transactions on Information Theory, 23 (1977), 38-42.  doi: 10.1109/tit.1977.1055672.

[28]

S. L. Ma and W. S. Ng, On non-existence of perfect and nearly perfect sequences, International Journal of Information and Coding Theory, 1 (2009), 15-38.  doi: 10.1504/IJICOT.2009.024045.

[29]

S. L. Ma and B. Schmidt, On $(p^a, p, p^a, p^a-1)$-relative difference sets, Designs, Codes and Cryptography, 6 (1995), 57-71.  doi: 10.1007/BF01390771.

[30]

A. Maschietti, Difference sets and hyperovals, Designs, Codes and Cryptography, 14 (1998), 89-98.  doi: 10.1023/A:1008264606494.

[31]

J. Michel and Q. Wang, Some new balanced and almost balanced quaternary sequences with low autocorrelation, Cryptography and Communications, 11 (2019), 191-206.  doi: 10.1007/s12095-018-0281-x.

[32]

J.-S. NoH. Chung and M.-S. Yun, Binary pseudorandom sequences of period $2^n-1$ with ideal autocorrelation generated by the polynomial $z^d+(z+ 1)^d$, IEEE Transactions on Information Theory, 44 (1998), 1278-1282.  doi: 10.1109/18.669400.

[33]

B. Özden and O. Yayla, Cryptographic functions and bit-error-rate analysis with almost $ p $-ary sequences, International Journal of Information Security Science, 8.3 (2019), 44-52.  doi: 10.1007/s12095-020-00423-5.

[34]

B. Özden and O. Yayla, Almost p-ary sequences, Cryptography and Communications, 12 (2020), 1057-1069.  doi: 10.1007/s12095-020-00423-5.

[35]

R. E. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.

[36]

A. Pott, Finite Geometry and Character Theory, Lecture Notes in Mathematics, 1601, Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0094449.

[37]

K.-U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Information Theory, 55 (2009), 1824-1832.  doi: 10.1109/TIT.2009.2013041.

[38]

X. ShiX. ZhuX. Huang and Q. Yue, A family of $m$-ary $\sigma$-sequences with good autocorrelation, IEEE Communications Letters, 23 (2019), 1132-1135.  doi: 10.1109/LCOMM.2019.2915234.

[39]

G. L. Sicuranza and A. Carini, Nonlinear system identification using quasi-perfect periodic sequences, Signal Processing, 120 (2016), 174-184.  doi: 10.1016/j.sigpro.2015.08.018.

[40]

V. M. Sidel'nikov, Some k-valued pseudo-random sequences and nearly equidistant codes, Problemy Peredachi Informatsii, 5 (1969), 16-22. 

[41]

J. Singer, A theorem in finite projective geometry and some applications to number theory, Transactions of the American Mathematical Society, 43 (1938), 377-385.  doi: 10.1090/S0002-9947-1938-1501951-4.

[42]

R. G. Stanton and D. Sprott, A family of difference sets, Canadian Journal of Mathematics, 10 (1958), 73-77.  doi: 10.4153/CJM-1958-008-5.

[43]

T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, 2, Markham Publishing Co., Chicago, IL, 1967.

[44]

X. Tang and C. Ding, New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value, IEEE Transactions on Information Theory, 56 (2010), 6398-6405.  doi: 10.1109/TIT.2010.2081170.

[45]

X. Tang and G. Gong, New constructions of binary sequences with optimal autocorrelation value/magnitude, IEEE Transactions on Information Theory, 56 (2010), 1278-1286.  doi: 10.1109/TIT.2009.2039159.

[46]

X. Tang and J. Lindner, Almost quadriphase sequence with ideal autocorrelation property, IEEE Signal Processing Letters, 16 (2008), 38-40. 

[47]

A. Tirkel and T. Hall, New quasi-perfect and perfect sequences of roots of unity and zero, in International Conference on Sequences and Their Applications

[48]

Q. Wang, W. Kong, Y. Yan, C. Wu and M. Yang, Autocorrelation of a class of quaternary sequences of period $2 p^m$, preprint, arXiv: 2002.00375.

[49]

O. Yayla, Nearly perfect sequences with arbitrary out-of-phase autocorrelation, Advances in Mathematics of Communications, 10 (2016), 401-411.  doi: 10.3934/amc.2016014.

[50]

N. Y. Yu and G. Gong, New binary sequences with optimal autocorrelation magnitude, IEEE Transactions on Information Theory, 54 (2008), 4771-4779.  doi: 10.1109/TIT.2008.928999.

show all references

References:
[1]

K. T. ArasuJ. F. Dillon and K. J. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Transactions on Information Theory, 61 (2015), 3276-3304.  doi: 10.1109/TIT.2015.2418204.

[2]

K. T. ArasuC. DingT. HellesethP. V. Kumar and H. M. Martinsen, Almost difference sets and their sequences with optimal autocorrelation, IEEE Transactions on Information Theory, 47 (2001), 2934-2943.  doi: 10.1109/18.959271.

[3] T. BethD. Jungnickel and H. Lenz, Design Theory: Volume 1, Cambridge University Press, 1999. 
[4]

Y. Cai and C. Ding, Binary sequences with optimal autocorrelation, Theoretical Computer Science, 410 (2009), 2316-2322.  doi: 10.1016/j.tcs.2009.02.021.

[5]

A. Çeșmelioǧlu and O. Olmez, Graphs of vectorial plateaued functions as difference sets, Finite Fields and Their Applications, 71 (2021), 101795. doi: 10.1016/j.ffa.2020.101795.

[6]

Y. M. Chee, Y. Tan and Y. Zhou, Almost p-ary perfect sequences, in International Conference on Sequences and Their Applications doi: 10.1007/978-3-642-15874-2_34.

[7]

I. Chih-Lin and R. D. Gitlin, Multi-code CDMA wireless personal communications networks, Proceedings IEEE International Conference on Communications ICC'95, 2 (1995), 1060-1064.  doi: 10.1109/ICC.1995.524263.

[8] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, CRC press, 2006.  doi: 10.1201/9781420049954.
[9]

L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, American Journal of Mathematics, 57 (1935), 391-424.  doi: 10.2307/2371217.

[10]

J. F. Dillon and H. Dobbertin, New cyclic difference sets with singer parameters, Finite Fields and Their Applications, 10 (2004), 342-389.  doi: 10.1016/j.ffa.2003.09.003.

[11]

C. DingT. Helleseth and K. Y. Lam, Several classes of binary sequences with three-level autocorrelation, IEEE Transactions on Information Theory, 45 (1999), 2606-2612.  doi: 10.1109/18.796414.

[12]

C. DingT. Helleseth and H. Martinsen, New families of binary sequences with optimal three-level autocorrelation, IEEE Transactions on Information Theory, 47 (2001), 428-433.  doi: 10.1109/18.904555.

[13]

V. E. Gantmakher and M. V. Zaleshin, Almost six-phase sequences with perfect periodic autocorrelation function, in International Conference on Sequences and Their Applications doi: 10.1007/978-3-319-12325-7_8.

[14] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511546907.
[15]

B. GordonW. Mills and L. Welch, Some new difference sets, Canadian Journal of Mathematics, 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2.

[16]

M. Hall, A survey of difference sets, Proceedings of the American Mathematical Society, 7 (1956), 975-986.  doi: 10.1090/S0002-9939-1956-0082502-7.

[17]

T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Transactions on Information Theory, 48 (2002), 2868-2872.  doi: 10.1109/TIT.2002.804052.

[18]

T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of coding theory, Vol. I, II

[19]

T. HellesethP. V. Kumar and H. Martinsen, A new family of ternary sequences with ideal two-level autocorrelation function, Des. Codes Cryptogr., 23 (2001), 157-166.  doi: 10.1023/A:1011208514883.

[20]

J. R. HollonM. Rangaswamy and P. Setlur, New families of optimal high-energy ternary sequences having good correlation properties, Journal of Algebraic Combinatorics, 50 (2019), 1-38.  doi: 10.1007/s10801-018-0835-1.

[21]

H. HuS. ShaoG. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Transactions on Information Theory, 60 (2014), 5054-5064.  doi: 10.1109/TIT.2014.2327625.

[22]

D. Jungnickel and A. Pott, Perfect and almost perfect sequences, Discrete Applied Mathematics, 95 (1999), 331-359.  doi: 10.1016/S0166-218X(99)00085-2.

[23]

Y.-S. KimJ.-S. ChungJ.-S. No and H. Chung, On the autocorrelation distributions of Sidel'nikov sequences, IEEE Transactions on Information Theory, 51 (2005), 3303-3307.  doi: 10.1109/TIT.2005.853310.

[24]

Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New quaternary sequences with optimal autocorrelation, ISIT, (2009), 286–289.

[25]

Y.-S. KimJ.-W. JangS.-H. Kim and J.-S. No, New quaternary sequences with ideal autocorrelation constructed from Legendre sequences, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96 (2013), 1872-1882.  doi: 10.1587/transfun.E96.A.1872.

[26]

P. V. KumarR. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, Journal of Combinatorial Theory, Series A, 40 (1985), 90-107.  doi: 10.1016/0097-3165(85)90049-4.

[27]

A. LempelM. Cohn and W. Eastman, A class of balanced binary sequences with optimal autocorrelation properties, IEEE Transactions on Information Theory, 23 (1977), 38-42.  doi: 10.1109/tit.1977.1055672.

[28]

S. L. Ma and W. S. Ng, On non-existence of perfect and nearly perfect sequences, International Journal of Information and Coding Theory, 1 (2009), 15-38.  doi: 10.1504/IJICOT.2009.024045.

[29]

S. L. Ma and B. Schmidt, On $(p^a, p, p^a, p^a-1)$-relative difference sets, Designs, Codes and Cryptography, 6 (1995), 57-71.  doi: 10.1007/BF01390771.

[30]

A. Maschietti, Difference sets and hyperovals, Designs, Codes and Cryptography, 14 (1998), 89-98.  doi: 10.1023/A:1008264606494.

[31]

J. Michel and Q. Wang, Some new balanced and almost balanced quaternary sequences with low autocorrelation, Cryptography and Communications, 11 (2019), 191-206.  doi: 10.1007/s12095-018-0281-x.

[32]

J.-S. NoH. Chung and M.-S. Yun, Binary pseudorandom sequences of period $2^n-1$ with ideal autocorrelation generated by the polynomial $z^d+(z+ 1)^d$, IEEE Transactions on Information Theory, 44 (1998), 1278-1282.  doi: 10.1109/18.669400.

[33]

B. Özden and O. Yayla, Cryptographic functions and bit-error-rate analysis with almost $ p $-ary sequences, International Journal of Information Security Science, 8.3 (2019), 44-52.  doi: 10.1007/s12095-020-00423-5.

[34]

B. Özden and O. Yayla, Almost p-ary sequences, Cryptography and Communications, 12 (2020), 1057-1069.  doi: 10.1007/s12095-020-00423-5.

[35]

R. E. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.

[36]

A. Pott, Finite Geometry and Character Theory, Lecture Notes in Mathematics, 1601, Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0094449.

[37]

K.-U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Information Theory, 55 (2009), 1824-1832.  doi: 10.1109/TIT.2009.2013041.

[38]

X. ShiX. ZhuX. Huang and Q. Yue, A family of $m$-ary $\sigma$-sequences with good autocorrelation, IEEE Communications Letters, 23 (2019), 1132-1135.  doi: 10.1109/LCOMM.2019.2915234.

[39]

G. L. Sicuranza and A. Carini, Nonlinear system identification using quasi-perfect periodic sequences, Signal Processing, 120 (2016), 174-184.  doi: 10.1016/j.sigpro.2015.08.018.

[40]

V. M. Sidel'nikov, Some k-valued pseudo-random sequences and nearly equidistant codes, Problemy Peredachi Informatsii, 5 (1969), 16-22. 

[41]

J. Singer, A theorem in finite projective geometry and some applications to number theory, Transactions of the American Mathematical Society, 43 (1938), 377-385.  doi: 10.1090/S0002-9947-1938-1501951-4.

[42]

R. G. Stanton and D. Sprott, A family of difference sets, Canadian Journal of Mathematics, 10 (1958), 73-77.  doi: 10.4153/CJM-1958-008-5.

[43]

T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, 2, Markham Publishing Co., Chicago, IL, 1967.

[44]

X. Tang and C. Ding, New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value, IEEE Transactions on Information Theory, 56 (2010), 6398-6405.  doi: 10.1109/TIT.2010.2081170.

[45]

X. Tang and G. Gong, New constructions of binary sequences with optimal autocorrelation value/magnitude, IEEE Transactions on Information Theory, 56 (2010), 1278-1286.  doi: 10.1109/TIT.2009.2039159.

[46]

X. Tang and J. Lindner, Almost quadriphase sequence with ideal autocorrelation property, IEEE Signal Processing Letters, 16 (2008), 38-40. 

[47]

A. Tirkel and T. Hall, New quasi-perfect and perfect sequences of roots of unity and zero, in International Conference on Sequences and Their Applications

[48]

Q. Wang, W. Kong, Y. Yan, C. Wu and M. Yang, Autocorrelation of a class of quaternary sequences of period $2 p^m$, preprint, arXiv: 2002.00375.

[49]

O. Yayla, Nearly perfect sequences with arbitrary out-of-phase autocorrelation, Advances in Mathematics of Communications, 10 (2016), 401-411.  doi: 10.3934/amc.2016014.

[50]

N. Y. Yu and G. Gong, New binary sequences with optimal autocorrelation magnitude, IEEE Transactions on Information Theory, 54 (2008), 4771-4779.  doi: 10.1109/TIT.2008.928999.

Table 1.  Orbits of $ G = {\mathbb Z}_{10} \times {\mathbb Z}_3 $ under $ x \rightarrow 19x $
orbits of length 1
(0, 0)}, {(0, 1)}, {(0, 2)}, {(5, 0)}, {(5, 1)}, {(5, 2)
orbits of length 2
(4, 0), (6, 0)}, {(1, 1), (9, 1)}, {(7, 0), (3, 0)}, {(8, 2), (2, 2)},
(9, 0), (1, 0)} {(7, 2), (3, 2)}, {(7, 1), (3, 1)}, {(1, 2), (9, 2)},
(8, 1), (2, 1)}, {(6, 2), (4, 2)}, {(6, 1), (4, 1)}, {(2, 0), (8, 0)
orbits of length 1
(0, 0)}, {(0, 1)}, {(0, 2)}, {(5, 0)}, {(5, 1)}, {(5, 2)
orbits of length 2
(4, 0), (6, 0)}, {(1, 1), (9, 1)}, {(7, 0), (3, 0)}, {(8, 2), (2, 2)},
(9, 0), (1, 0)} {(7, 2), (3, 2)}, {(7, 1), (3, 1)}, {(1, 2), (9, 2)},
(8, 1), (2, 1)}, {(6, 2), (4, 2)}, {(6, 1), (4, 1)}, {(2, 0), (8, 0)
Table 2.  Sequences, their autocorrelation and alphabet
Construction Out-of-phase autocorrelation Alphabet
[29], [36] 0 $ p $-ary
[17], [18] -1 $ p $-ary
[3], [10], [15], [16], [30], [32], [35], [41], [42], [43], [44] -1 binary
[12], [27], [40], [44] $ \pm 2 $ binary
[2], [40], [27], [44] $ (0,-4) $ binary
[45], [50] $ (0,\pm 4) $ binary
[4], [11], [44] $ (1,-3) $ binary
[25] $ (2p,-2) $ or $ (\pm 2p, \pm 2) $ binary
[1], [19], [21] -1 ternary
[23] $ (0,-3,3\zeta_3,3\zeta_3^2) $ ternary
$ (0,\pm 2i,-4,-2,-2\pm 2i) $ or $ (0,\pm 2i,\pm2,-2\pm 2i) $ quaternary
[24] $ (-2,\pm 2i) $ quaternary
[25], [44] $ (0,-2) $ quaternary
[31] $ (-1,\pm 3) $ quaternary
[46] $ (-1,\pm(1+2i)) $ or $ (\pm 1,-3) $ quaternary
[48] $ (\frac{p^{n-1}(p-7)}{2},\frac{p^{n-1}(p-3)}{2},p^n) $ quaternary
[6] $ 0 $ $ p $-ary with one zero
$ -1 $ $ p $-ary with one zero
[38] $ -1 $ $ m $-ary with one zero
[13] $ (0,3q^{n-1}) $ $ 6 $-ary with one zero
[47] $ (0,p^{(k-1)n}) $ $ p^{kn} $-ary with zeros
$ (0,p^{(k-1)n}) $ $ \frac{p^{n-1}}{\gcd(t,p^{n-1})} $-ary with zeros
$ 0 $ $ m $-ary with one zero
Theorem 3.7 $ \frac{q-3}{2} $ quaternary with one zero
Proposition 7 $ (-1,0) $ $ m $-ary with $ \frac{q}{2}+1 $ zeros
Construction Out-of-phase autocorrelation Alphabet
[29], [36] 0 $ p $-ary
[17], [18] -1 $ p $-ary
[3], [10], [15], [16], [30], [32], [35], [41], [42], [43], [44] -1 binary
[12], [27], [40], [44] $ \pm 2 $ binary
[2], [40], [27], [44] $ (0,-4) $ binary
[45], [50] $ (0,\pm 4) $ binary
[4], [11], [44] $ (1,-3) $ binary
[25] $ (2p,-2) $ or $ (\pm 2p, \pm 2) $ binary
[1], [19], [21] -1 ternary
[23] $ (0,-3,3\zeta_3,3\zeta_3^2) $ ternary
$ (0,\pm 2i,-4,-2,-2\pm 2i) $ or $ (0,\pm 2i,\pm2,-2\pm 2i) $ quaternary
[24] $ (-2,\pm 2i) $ quaternary
[25], [44] $ (0,-2) $ quaternary
[31] $ (-1,\pm 3) $ quaternary
[46] $ (-1,\pm(1+2i)) $ or $ (\pm 1,-3) $ quaternary
[48] $ (\frac{p^{n-1}(p-7)}{2},\frac{p^{n-1}(p-3)}{2},p^n) $ quaternary
[6] $ 0 $ $ p $-ary with one zero
$ -1 $ $ p $-ary with one zero
[38] $ -1 $ $ m $-ary with one zero
[13] $ (0,3q^{n-1}) $ $ 6 $-ary with one zero
[47] $ (0,p^{(k-1)n}) $ $ p^{kn} $-ary with zeros
$ (0,p^{(k-1)n}) $ $ \frac{p^{n-1}}{\gcd(t,p^{n-1})} $-ary with zeros
$ 0 $ $ m $-ary with one zero
Theorem 3.7 $ \frac{q-3}{2} $ quaternary with one zero
Proposition 7 $ (-1,0) $ $ m $-ary with $ \frac{q}{2}+1 $ zeros
[1]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[2]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

[3]

Oǧuz Yayla. Nearly perfect sequences with arbitrary out-of-phase autocorrelation. Advances in Mathematics of Communications, 2016, 10 (2) : 401-411. doi: 10.3934/amc.2016014

[4]

Pinhui Ke, Yueqin Jiang, Zhixiong Chen. On the linear complexities of two classes of quaternary sequences of even length with optimal autocorrelation. Advances in Mathematics of Communications, 2018, 12 (3) : 525-539. doi: 10.3934/amc.2018031

[5]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

[6]

Pinhui Ke, Panpan Qiao, Yang Yang. On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length $ 2p$. Advances in Mathematics of Communications, 2022, 16 (2) : 285-302. doi: 10.3934/amc.2020112

[7]

Xianhong Xie, Yi Ouyang, Honggang Hu, Ming Mao. Construction of three classes of strictly optimal frequency-hopping sequence sets. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022024

[8]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[9]

Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2020, 14 (4) : 579-589. doi: 10.3934/amc.2020031

[10]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[11]

Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with inter-subset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541-552. doi: 10.3934/amc.2018032

[12]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[13]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[14]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[15]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[16]

Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial and Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451

[17]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[18]

Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021019

[19]

Yang Yang, Guang Gong, Xiaohu Tang. On $\omega$-cyclic-conjugated-perfect quaternary GDJ sequences. Advances in Mathematics of Communications, 2016, 10 (2) : 321-331. doi: 10.3934/amc.2016008

[20]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (405)
  • HTML views (466)
  • Cited by (0)

Other articles
by authors

[Back to Top]