doi: 10.3934/amc.2021013
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Generalized Hamming weights of toric codes over hypersimplices and squarefree affine evaluation codes

Indian Institute of Science Education and Research, Bhopal, India

* Corresponding author: Nupur Patanker

Received  December 2020 Revised  March 2021 Early access May 2021

Let $ \mathbb{F}_{q} $ be a finite field with $ q $ elements, where $ q $ is a power of a prime $ p $. A polynomial over $ \mathbb{F}_{q} $ is monomially squarefree if all its monomials are squarefree. In this paper, we determine an upper bound on the number of common zeroes of any set of $ r $ linearly independent monomially squarefree polynomials of $ \mathbb{F}_{q}[t_{1}, t_{2}, \dots, t_{s}] $ in the affine torus $ T = (\mathbb{F}_{q}^{*})^{s} $ under certain conditions on $ r $, $ s $ and the degree of these polynomials. Applying the results, we obtain the generalized Hamming weights of toric codes over hypersimplices and squarefree affine evaluation codes, as defined in [14].

Citation: Nupur Patanker, Sanjay Kumar Singh. Generalized Hamming weights of toric codes over hypersimplices and squarefree affine evaluation codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2021013
References:
[1]

P. Beelen and M. Datta, Generalized Hamming weights of affine Cartesian codes, Finite Fields Appl., 51 (2018), 130-145.  doi: 10.1016/j.ffa.2018.01.006.  Google Scholar

[2]

M. Bras-Amorós and M. E. O'Sullivan, Duality for some families of correction capability optimized evaluation codes, Adv. Math. Commun., 2 (2008), 15-33.  doi: 10.3934/amc.2008.2.15.  Google Scholar

[3]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3$^{rd}$ edition, Undergraduate Texts in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-35651-8.  Google Scholar

[4]

C. Galindo, O. Geil, F. Hernando and D. Ruano, On the distance of stabilizer quantum codes from J-affine variety codes, Quantum Inf. Process., 16 (2017), Paper No. 111, 32 pp. doi: 10.1007/s11128-017-1559-1.  Google Scholar

[5]

C. Galindo and F. Hernando, Quantum codes from affine variety codes and their subfield-subcodes, Des. Codes Cryptogr., 76 (2015), 89-100.  doi: 10.1007/s10623-014-0016-8.  Google Scholar

[6]

C. GalindoF. Hernando and D. Ruano, Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement, Quantum Inf. Process., 14 (2015), 3211-3231.  doi: 10.1007/s11128-015-1057-2.  Google Scholar

[7]

O. Geil, Evaluation codes from an affine variety code perspective, in Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., 5, World Sci. Publ., Hackensack, NJ, 2008,153–180. doi: 10.1142/9789812794017_0004.  Google Scholar

[8]

M. González-SarabiaE. CampsE. Sarmiento and R. H. Villarreal, The second generalized Hamming weight of some evaluation codes arising from a projective torus, Finite Fields Appl., 52 (2018), 370-394.  doi: 10.1016/j.ffa.2018.05.002.  Google Scholar

[9]

M. González-SarabiaJ. Martínez-BernalR. H. Villarreal and C. E. Vivares, Generalized minimum distance functions, J. Algebraic Combin., 50 (2019), 317-346.  doi: 10.1007/s10801-018-0855-x.  Google Scholar

[10]

J. P. Hansen, Toric surfaces and error-correcting codes, in Coding Theory, Cryptography and Related Areas (Guanajuato, 1998), Springer, Berlin, 2000,132–142.  Google Scholar

[11]

J. P. Hansen, Toric varieties Hirzebruch surfaces and error-correcting codes, Appl. Algebra Engrg. Comm. Comput., 13 (2002), 289-300.  doi: 10.1007/s00200-002-0106-0.  Google Scholar

[12]

P. Heijnen and R. Pellikaan, Generalized Hamming weights of $q$-ary Reed-Muller codes, IEEE Trans. Inform. Theory, 44 (1998), 181-196.  doi: 10.1109/18.651015.  Google Scholar

[13]

T. HellesethT. Kløve and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block length $n_{1}((q^l-1)/N)$, Discrete Math., 18 (1977), 179-211.  doi: 10.1016/0012-365X(77)90078-4.  Google Scholar

[14]

D. JaramilloM. V. Pinto and R. H. Villarreal, Evaluation codes and their basic parameters, Des. Codes Cryptogr., 89 (2021), 269-300.  doi: 10.1007/s10623-020-00818-8.  Google Scholar

[15]

D. Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 63-79.  doi: 10.1007/s00200-004-0152-x.  Google Scholar

[16]

T. Kløve, The weight distribution of linear codes over $GF(q^l)$ having generator matrix over $GF(q)$, Discrete Math., 23 (1978), 159-168.  doi: 10.1016/0012-365X(78)90114-0.  Google Scholar

[17]

J. Little and H. Schenck, Toric surface codes and Minkowski sums, SIAM J. Discrete Math., 20 (2006), 999-1014.  doi: 10.1137/050637054.  Google Scholar

[18]

J. Little and R. Schwarz, On toric codes and multivariate Vandermonde matrices, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 349-367.  doi: 10.1007/s00200-007-0041-1.  Google Scholar

[19]

Z. Nie and A. Y. Wang, Hilbert functions and the finite degree Zariski closure in finite field combinatorial geometry, J. Combin. Theory Ser. A, 134 (2015), 196-220.  doi: 10.1016/j.jcta.2015.03.011.  Google Scholar

[20]

C. Rentería-MárquezA. Simis and R. H. Villarreal, Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields, Finite Fields Appl., 17 (2011), 81-104.  doi: 10.1016/j.ffa.2010.09.007.  Google Scholar

[21]

D. Ruano, On the parameters of r-dimensional toric codes, Finite Fields Appl., 13 (2007), 962-976.  doi: 10.1016/j.ffa.2007.02.002.  Google Scholar

[22]

D. Ruano, On the structure of generalized toric codes, J. Symbolic Comput., 44 (2009), 499-506.  doi: 10.1016/j.jsc.2007.07.018.  Google Scholar

[23]

E. SarmientoM. V. Pinto and R. H. Villarreal, The minimum distance of parameterized codes on projective tori, Appl. Algebra Engrg. Comm. Comput., 22 (2011), 249-264.  doi: 10.1007/s00200-011-0148-2.  Google Scholar

[24]

I. Soprunov and J. Soprunova, Toric surface codes and Minkowski length of polygons, SIAM J. Discrete Math., 23 (2008/09), 384-400.  doi: 10.1137/080716554.  Google Scholar

[25]

I. Soprunov and J. Soprunova, Bringing toric codes to the next dimension, SIAM J. Discrete Math., 24 (2010), 655-665.  doi: 10.1137/090762592.  Google Scholar

[26]

V. G. Umaña and M. Velasco, Dual toric codes and polytopes of degree one, SIAM J. Discrete Math., 29 (2015), 683-692.  doi: 10.1137/140966228.  Google Scholar

[27]

V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.  doi: 10.1109/18.133259.  Google Scholar

show all references

References:
[1]

P. Beelen and M. Datta, Generalized Hamming weights of affine Cartesian codes, Finite Fields Appl., 51 (2018), 130-145.  doi: 10.1016/j.ffa.2018.01.006.  Google Scholar

[2]

M. Bras-Amorós and M. E. O'Sullivan, Duality for some families of correction capability optimized evaluation codes, Adv. Math. Commun., 2 (2008), 15-33.  doi: 10.3934/amc.2008.2.15.  Google Scholar

[3]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3$^{rd}$ edition, Undergraduate Texts in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-35651-8.  Google Scholar

[4]

C. Galindo, O. Geil, F. Hernando and D. Ruano, On the distance of stabilizer quantum codes from J-affine variety codes, Quantum Inf. Process., 16 (2017), Paper No. 111, 32 pp. doi: 10.1007/s11128-017-1559-1.  Google Scholar

[5]

C. Galindo and F. Hernando, Quantum codes from affine variety codes and their subfield-subcodes, Des. Codes Cryptogr., 76 (2015), 89-100.  doi: 10.1007/s10623-014-0016-8.  Google Scholar

[6]

C. GalindoF. Hernando and D. Ruano, Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement, Quantum Inf. Process., 14 (2015), 3211-3231.  doi: 10.1007/s11128-015-1057-2.  Google Scholar

[7]

O. Geil, Evaluation codes from an affine variety code perspective, in Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., 5, World Sci. Publ., Hackensack, NJ, 2008,153–180. doi: 10.1142/9789812794017_0004.  Google Scholar

[8]

M. González-SarabiaE. CampsE. Sarmiento and R. H. Villarreal, The second generalized Hamming weight of some evaluation codes arising from a projective torus, Finite Fields Appl., 52 (2018), 370-394.  doi: 10.1016/j.ffa.2018.05.002.  Google Scholar

[9]

M. González-SarabiaJ. Martínez-BernalR. H. Villarreal and C. E. Vivares, Generalized minimum distance functions, J. Algebraic Combin., 50 (2019), 317-346.  doi: 10.1007/s10801-018-0855-x.  Google Scholar

[10]

J. P. Hansen, Toric surfaces and error-correcting codes, in Coding Theory, Cryptography and Related Areas (Guanajuato, 1998), Springer, Berlin, 2000,132–142.  Google Scholar

[11]

J. P. Hansen, Toric varieties Hirzebruch surfaces and error-correcting codes, Appl. Algebra Engrg. Comm. Comput., 13 (2002), 289-300.  doi: 10.1007/s00200-002-0106-0.  Google Scholar

[12]

P. Heijnen and R. Pellikaan, Generalized Hamming weights of $q$-ary Reed-Muller codes, IEEE Trans. Inform. Theory, 44 (1998), 181-196.  doi: 10.1109/18.651015.  Google Scholar

[13]

T. HellesethT. Kløve and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block length $n_{1}((q^l-1)/N)$, Discrete Math., 18 (1977), 179-211.  doi: 10.1016/0012-365X(77)90078-4.  Google Scholar

[14]

D. JaramilloM. V. Pinto and R. H. Villarreal, Evaluation codes and their basic parameters, Des. Codes Cryptogr., 89 (2021), 269-300.  doi: 10.1007/s10623-020-00818-8.  Google Scholar

[15]

D. Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 63-79.  doi: 10.1007/s00200-004-0152-x.  Google Scholar

[16]

T. Kløve, The weight distribution of linear codes over $GF(q^l)$ having generator matrix over $GF(q)$, Discrete Math., 23 (1978), 159-168.  doi: 10.1016/0012-365X(78)90114-0.  Google Scholar

[17]

J. Little and H. Schenck, Toric surface codes and Minkowski sums, SIAM J. Discrete Math., 20 (2006), 999-1014.  doi: 10.1137/050637054.  Google Scholar

[18]

J. Little and R. Schwarz, On toric codes and multivariate Vandermonde matrices, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 349-367.  doi: 10.1007/s00200-007-0041-1.  Google Scholar

[19]

Z. Nie and A. Y. Wang, Hilbert functions and the finite degree Zariski closure in finite field combinatorial geometry, J. Combin. Theory Ser. A, 134 (2015), 196-220.  doi: 10.1016/j.jcta.2015.03.011.  Google Scholar

[20]

C. Rentería-MárquezA. Simis and R. H. Villarreal, Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields, Finite Fields Appl., 17 (2011), 81-104.  doi: 10.1016/j.ffa.2010.09.007.  Google Scholar

[21]

D. Ruano, On the parameters of r-dimensional toric codes, Finite Fields Appl., 13 (2007), 962-976.  doi: 10.1016/j.ffa.2007.02.002.  Google Scholar

[22]

D. Ruano, On the structure of generalized toric codes, J. Symbolic Comput., 44 (2009), 499-506.  doi: 10.1016/j.jsc.2007.07.018.  Google Scholar

[23]

E. SarmientoM. V. Pinto and R. H. Villarreal, The minimum distance of parameterized codes on projective tori, Appl. Algebra Engrg. Comm. Comput., 22 (2011), 249-264.  doi: 10.1007/s00200-011-0148-2.  Google Scholar

[24]

I. Soprunov and J. Soprunova, Toric surface codes and Minkowski length of polygons, SIAM J. Discrete Math., 23 (2008/09), 384-400.  doi: 10.1137/080716554.  Google Scholar

[25]

I. Soprunov and J. Soprunova, Bringing toric codes to the next dimension, SIAM J. Discrete Math., 24 (2010), 655-665.  doi: 10.1137/090762592.  Google Scholar

[26]

V. G. Umaña and M. Velasco, Dual toric codes and polytopes of degree one, SIAM J. Discrete Math., 29 (2015), 683-692.  doi: 10.1137/140966228.  Google Scholar

[27]

V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.  doi: 10.1109/18.133259.  Google Scholar

[1]

Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115-122. doi: 10.3934/amc.2017006

[2]

Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064

[3]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

[4]

Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063

[5]

Simon Lloyd. On the Closing Lemma problem for the torus. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951

[6]

Peter Seibt. A period formula for torus automorphisms. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029

[7]

Aaron W. Brown. Smooth stabilizers for measures on the torus. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 43-58. doi: 10.3934/dcds.2015.35.43

[8]

Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041

[9]

Mostapha Benhenda. Nonstandard smooth realization of translations on the torus. Journal of Modern Dynamics, 2013, 7 (3) : 329-367. doi: 10.3934/jmd.2013.7.329

[10]

Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301

[11]

M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343

[12]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[13]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[14]

Tolulope Fadina, Ariel Neufeld, Thorsten Schmidt. Affine processes under parameter uncertainty. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 5-. doi: 10.1186/s41546-019-0039-1

[15]

Henk W. Broer, Carles Simó, Renato Vitolo. Chaos and quasi-periodicity in diffeomorphisms of the solid torus. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 871-905. doi: 10.3934/dcdsb.2010.14.871

[16]

Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030

[17]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[18]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[19]

Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347

[20]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (43)
  • HTML views (194)
  • Cited by (0)

Other articles
by authors

[Back to Top]