[1]
|
C. Carlet and S. Guilley, Complementary dual codes for countermeasures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.
doi: 10.3934/amc.2016.10.131.
|
[2]
|
C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605-2618.
doi: 10.1007/s10623-018-0463-8.
|
[3]
|
C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ which are equivalent to LCD codes, IEEE Trans. Inf. Theory, 64 (2018), 3010-3017.
doi: 10.1109/TIT.2018.2789347.
|
[4]
|
B. Chen and H. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847.
|
[5]
|
P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576.
doi: 10.1109/tit.1975.1055435.
|
[6]
|
C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330.
doi: 10.1109/TIT.2015.2470251.
|
[7]
|
C. Ding, C. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45 (2017), 237-263.
doi: 10.1016/j.ffa.2016.12.009.
|
[8]
|
X. Huang, Q. Yue, Y. Wu and X. Shi, Binary Primitive LCD BCH codes, Des. Codes Cryptogr., 88 (2020), 2453-2473.
doi: 10.1007/s10623-020-00795-y.
|
[9]
|
L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847.
|
[10]
|
C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.
doi: 10.1007/s10623-017-0447-0.
|
[11]
|
C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 4344-4356.
doi: 10.1109/TIT.2017.2672961.
|
[12]
|
C. Li, P. Wu and F. Liu, On two classes of primitive BCH codes and some related codes, IEEE Trans. Inf. Theory, 65 (2019), 3830-3840.
doi: 10.1109/TIT.2018.2883615.
|
[13]
|
C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.
doi: 10.1016/j.ffa.2014.01.009.
|
[14]
|
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Inc., 1983.
|
[15]
|
F. Li, Q. Yue and Y. Wu, Designed distances and parameters of new LCD BCH codes over finite fields, Cryptogr. Commun., 12 (2020), 147-163.
doi: 10.1007/s12095-019-00385-3.
|
[16]
|
S. Li, C. Ding, M. Xiong and G. Ge, Narrow-sense BCH codes over GF$(q)$ with length $n = \frac{q^m-1}{q-1}$, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236.
doi: 10.1109/TIT.2017.2743687.
|
[17]
|
S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717.
|
[18]
|
H. Liu, C. Ding and C. Li, Dimensions of three types of BCH codes over GF$(q)$, Discrete Math., 340 (2017), 1910-1927.
doi: 10.1016/j.disc.2017.04.001.
|
[19]
|
J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.
doi: 10.1016/S0019-9958(64)90438-3.
|
[20]
|
X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2018), 1950150.
doi: 10.1142/S0219498819501500.
|
[21]
|
K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible cyclic codes, IEEE Trans. Inf. Theory, 16 (1970), 644-646.
doi: 10.1109/tit.1970.1054517.
|
[22]
|
Y. Wu and Q. Yue, Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes, IEEE Trans. Inf. Theory, 65 (2019), 1740-1751.
|
[23]
|
H. Yan, H. Liu, C. Li and S. Yang, Parameters of LCD BCH codes with two lengths, Adv. Math. Commun., 12 (2018), 579-594.
doi: 10.3934/amc.2018034.
|
[24]
|
X. Yang and J. L. Massey, The necessary and sufficient condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.
doi: 10.1016/0012-365X(94)90283-6.
|
[25]
|
Z. Zhou, X. Li, C. Tang and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inf. Theory, 65 (2019), 16-27.
doi: 10.1109/TIT.2018.2823704.
|