doi: 10.3934/amc.2021016

Delegating signing rights in a multivariate proxy signature scheme

1. 

Department of Mathematics, National Institute of Technology Jamshedpur, Jamshedpur-831014, India

2. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA

3. 

Department of Mathematics, The LNM Institute of Information Technology, Jaipur-302031, India

* Corresponding author: nknkundu@gmail.com

Received  October 2020 Revised  February 2021 Published  June 2021

Fund Project: The first author is supported by DRDO, India (ERIP/ER/202005001/M/01/1775)

In the context of digital signatures, the proxy signature holds a significant role of enabling an original signer to delegate its signing ability to another party (i.e., proxy signer). It has significant practical applications. Particularly it is useful in distributed systems, where delegation of authentication rights is quite common. For example, key sharing protocol, grid computing, and mobile communications. Currently, a large portion of existing proxy signature schemes are based on the hardness of problems like integer factoring, discrete logarithms, and/or elliptic curve discrete logarithms. However, with the rising of quantum computers, the problem of prime factorization and discrete logarithm will be solvable in polynomial-time, due to Shor's algorithm, which dilutes the security features of existing ElGamal, RSA, ECC, and the proxy signature schemes based on these problems. As a consequence, construction of secure and efficient post-quantum proxy signature becomes necessary. In this work, we develop a post-quantum proxy signature scheme Mult-proxy, relying on multivariate public key cryptography (MPKC), which is one of the most promising candidates of post-quantum cryptography. We employ a 5-pass identification protocol to design our proxy signature scheme. Our work attains the usual proxy criterion and a one-more-unforgeability criterion under the hardness of the Multivariate Quadratic polynomial (MQ) problem. It produces optimal size proxy signatures and optimal size proxy shares in the field of MPKC.

Citation: Sumit Kumar Debnath, Tanmay Choudhury, Pantelimon Stănică, Kunal Dey, Nibedita Kundu. Delegating signing rights in a multivariate proxy signature scheme. Advances in Mathematics of Communications, doi: 10.3934/amc.2021016
References:
[1]

A. K. Awasthi and S. Lal, Proxy blind signature scheme, Trans. on Cryptology, 2:1 (2005), 5-11.   Google Scholar

[2]

D. J. Bernstein, Introduction to Post-Quantum Cryptography, Post-Quantum Cryptography, Springer–Berlin, Heidelberg, 2009, 1–14. doi: 10.1007/978-3-540-88702-7_1.  Google Scholar

[3]

A. BogdanovT. EisenbarthA. Rupp and C. Wolf, Time-area optimized public-key engines: MQ-cryptosystems as replacement for elliptic curves?, Cryptographic Hardware and Embedded Systems, 5154 (2008), 45-61.   Google Scholar

[4]

A. BoldyrevaA. Palacio and B. Warinschi, Secure proxy signature schemes for delegation of signing rights, J. Cryptology, 25 (2012), 57-115.  doi: 10.1007/s00145-010-9082-x.  Google Scholar

[5]

A. I.-T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F. Y.-S. Lee and B.-Y. Yang, SSE implementation of multivariate PKCS on modern x86 CPUs, International Workshop on Cryptographic Hardware and Embedded Systems, (2009), 33–48. Google Scholar

[6]

J. Chen, J. Ling, J. Ning, E. Panaousis, G. Loukas, K. Liang and J. Chen, Post quantum proxy signature scheme based on the multivariate public key cryptographic signature, International J. Distributed Sensor Networks, 16 (2020). doi: 10.1177/1550147720914775.  Google Scholar

[7]

M.-S. ChenA. HülsingJ. RijneveldS. Samardjiska and P. Schwabe, From 5-pass MQ-based identification to MQ-based signatures, Adv. Cryptology, 10032 (2016), 135-165.  doi: 10.1007/978-3-662-53890-6_5.  Google Scholar

[8]

J. -Zhu DaiX.-H. Yang and J.-X. Dong, Designated-receiver proxy signature scheme for electronic commerce, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), IEEE, 1 (2003), 384-389.   Google Scholar

[9]

J. Ding and D. Schmidt, Rainbow, a new multivariable polynomial signature scheme, International Conference on Applied Cryptography and Network Security, (2005), 164–175. doi: 10.1007/s40840-015-0125-1.  Google Scholar

[10]

G. Fuchsbauer and D. Pointcheval, Anonymous proxy signatures, International Conference on Security and Cryptography for Networks, (2008), 201–217. Google Scholar

[11]

M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness, Freeman San Francisco, 174 (1979).  Google Scholar

[12]

A. Kipnis, J. Patarin and L. Goubin, Unbalanced oil and vinegar signature schemes, International Conference on the Theory and Applications of Cryptographic Techniques, (1999), 206–222. doi: 10.1007/3-540-48910-X_15.  Google Scholar

[13]

Q. LinJi n LiZ. HuangW. Chen and J. Shen, A short linearly homomorphic proxy signature scheme, IEEE Access, 6 (2018), 12966-12972.   Google Scholar

[14]

M. MamboK. Usuda and E. Okamoto, Proxy signatures: Delegation of the power to sign messages, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 79:9 (1996), 1338-1354.   Google Scholar

[15]

M. Mambo, K. Usuda and E. Okamoto, Proxy signatures for delegating signing operation, Proceedings of the 3rd ACM conference on Computer and Communications Security, (1996), 48–57. Google Scholar

[16]

T. Matsumoto and H. Imai, Public quadratic polynomial-tuples for efficient signature-verification and message-encryption, Workshop on the Theory and Application of Cryptographic Techniques, (1988), 419–453. doi: 10.1007/3-540-45961-8_39.  Google Scholar

[17]

J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms, International Conference on the Theory and Applications of Cryptographic Techniques, (1996), 33–48. Google Scholar

[18]

A. Petzoldt, M.-S. Chen, B.-Y. Yang, C. Tao and J. Ding, Design principles for HFEV-based multivariate signature schemes, International Conference on the Theory and Application of Cryptology and Information Security, (2015), 311–334. doi: 10.1007/978-3-662-48797-6_14.  Google Scholar

[19]

E. Sakalauskas, The multivariate quadratic power problem over ZN is NP-complete, Information Technology and Control, 41:1 (2012), 33-39.   Google Scholar

[20]

K. SakumotoT. Shirai and H. Hiwatari, Public-key identification schemes based on multivariate quadratic polynomials, Advances in Cryptology, 6841 (2011), 706-723.  doi: 10.1007/978-3-642-22792-9_40.  Google Scholar

[21]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, 41 (1999), 303-332.  doi: 10.1137/S0036144598347011.  Google Scholar

[22]

S. Tang and L. Xu, Proxy signature scheme based on isomorphisms of polynomials, in International Conference on Network and System Security, (2012), 113–125. doi: 10.1007/978-3-642-34601-9_9.  Google Scholar

[23]

G. Wang, F. Bao, J. Zhou and R. H Deng, Security analysis of some proxy signatures, International Conference on Information Security and Cryptology, (2003), 305–319. doi: 10.1007/978-3-540-24691-6_23.  Google Scholar

[24]

F. Wu, W. Yao, X. Zhang, W. Wang and Z. Zheng, Identity-based proxy signature over NTRU lattice, International J. Communication Systems, 32 (2019), e3867. doi: 10.1002/dac.3867.  Google Scholar

[25]

K. Zhang, Threshold proxy signature schemes, International Workshop on Information Security, (1997), 282–290. Google Scholar

[26]

H. ZhuY. TanX. YuY. XueQ. ZhangL. Zhu and Y. Li, An identity-based proxy signature on NTRU lattice, Chinese J. Electronics, 27:2 (2018), 297-303.   Google Scholar

show all references

References:
[1]

A. K. Awasthi and S. Lal, Proxy blind signature scheme, Trans. on Cryptology, 2:1 (2005), 5-11.   Google Scholar

[2]

D. J. Bernstein, Introduction to Post-Quantum Cryptography, Post-Quantum Cryptography, Springer–Berlin, Heidelberg, 2009, 1–14. doi: 10.1007/978-3-540-88702-7_1.  Google Scholar

[3]

A. BogdanovT. EisenbarthA. Rupp and C. Wolf, Time-area optimized public-key engines: MQ-cryptosystems as replacement for elliptic curves?, Cryptographic Hardware and Embedded Systems, 5154 (2008), 45-61.   Google Scholar

[4]

A. BoldyrevaA. Palacio and B. Warinschi, Secure proxy signature schemes for delegation of signing rights, J. Cryptology, 25 (2012), 57-115.  doi: 10.1007/s00145-010-9082-x.  Google Scholar

[5]

A. I.-T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F. Y.-S. Lee and B.-Y. Yang, SSE implementation of multivariate PKCS on modern x86 CPUs, International Workshop on Cryptographic Hardware and Embedded Systems, (2009), 33–48. Google Scholar

[6]

J. Chen, J. Ling, J. Ning, E. Panaousis, G. Loukas, K. Liang and J. Chen, Post quantum proxy signature scheme based on the multivariate public key cryptographic signature, International J. Distributed Sensor Networks, 16 (2020). doi: 10.1177/1550147720914775.  Google Scholar

[7]

M.-S. ChenA. HülsingJ. RijneveldS. Samardjiska and P. Schwabe, From 5-pass MQ-based identification to MQ-based signatures, Adv. Cryptology, 10032 (2016), 135-165.  doi: 10.1007/978-3-662-53890-6_5.  Google Scholar

[8]

J. -Zhu DaiX.-H. Yang and J.-X. Dong, Designated-receiver proxy signature scheme for electronic commerce, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), IEEE, 1 (2003), 384-389.   Google Scholar

[9]

J. Ding and D. Schmidt, Rainbow, a new multivariable polynomial signature scheme, International Conference on Applied Cryptography and Network Security, (2005), 164–175. doi: 10.1007/s40840-015-0125-1.  Google Scholar

[10]

G. Fuchsbauer and D. Pointcheval, Anonymous proxy signatures, International Conference on Security and Cryptography for Networks, (2008), 201–217. Google Scholar

[11]

M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness, Freeman San Francisco, 174 (1979).  Google Scholar

[12]

A. Kipnis, J. Patarin and L. Goubin, Unbalanced oil and vinegar signature schemes, International Conference on the Theory and Applications of Cryptographic Techniques, (1999), 206–222. doi: 10.1007/3-540-48910-X_15.  Google Scholar

[13]

Q. LinJi n LiZ. HuangW. Chen and J. Shen, A short linearly homomorphic proxy signature scheme, IEEE Access, 6 (2018), 12966-12972.   Google Scholar

[14]

M. MamboK. Usuda and E. Okamoto, Proxy signatures: Delegation of the power to sign messages, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 79:9 (1996), 1338-1354.   Google Scholar

[15]

M. Mambo, K. Usuda and E. Okamoto, Proxy signatures for delegating signing operation, Proceedings of the 3rd ACM conference on Computer and Communications Security, (1996), 48–57. Google Scholar

[16]

T. Matsumoto and H. Imai, Public quadratic polynomial-tuples for efficient signature-verification and message-encryption, Workshop on the Theory and Application of Cryptographic Techniques, (1988), 419–453. doi: 10.1007/3-540-45961-8_39.  Google Scholar

[17]

J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms, International Conference on the Theory and Applications of Cryptographic Techniques, (1996), 33–48. Google Scholar

[18]

A. Petzoldt, M.-S. Chen, B.-Y. Yang, C. Tao and J. Ding, Design principles for HFEV-based multivariate signature schemes, International Conference on the Theory and Application of Cryptology and Information Security, (2015), 311–334. doi: 10.1007/978-3-662-48797-6_14.  Google Scholar

[19]

E. Sakalauskas, The multivariate quadratic power problem over ZN is NP-complete, Information Technology and Control, 41:1 (2012), 33-39.   Google Scholar

[20]

K. SakumotoT. Shirai and H. Hiwatari, Public-key identification schemes based on multivariate quadratic polynomials, Advances in Cryptology, 6841 (2011), 706-723.  doi: 10.1007/978-3-642-22792-9_40.  Google Scholar

[21]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, 41 (1999), 303-332.  doi: 10.1137/S0036144598347011.  Google Scholar

[22]

S. Tang and L. Xu, Proxy signature scheme based on isomorphisms of polynomials, in International Conference on Network and System Security, (2012), 113–125. doi: 10.1007/978-3-642-34601-9_9.  Google Scholar

[23]

G. Wang, F. Bao, J. Zhou and R. H Deng, Security analysis of some proxy signatures, International Conference on Information Security and Cryptology, (2003), 305–319. doi: 10.1007/978-3-540-24691-6_23.  Google Scholar

[24]

F. Wu, W. Yao, X. Zhang, W. Wang and Z. Zheng, Identity-based proxy signature over NTRU lattice, International J. Communication Systems, 32 (2019), e3867. doi: 10.1002/dac.3867.  Google Scholar

[25]

K. Zhang, Threshold proxy signature schemes, International Workshop on Information Security, (1997), 282–290. Google Scholar

[26]

H. ZhuY. TanX. YuY. XueQ. ZhangL. Zhu and Y. Li, An identity-based proxy signature on NTRU lattice, Chinese J. Electronics, 27:2 (2018), 297-303.   Google Scholar

Figure 1.  Communication flow in signature scheme
Figure 2.  5-pass identification protocol
Figure 3.  Our proxy signature protocol
Table 1.  General comparison of different key sizes of our scheme Mult-proxy, Tang and Xu's scheme [22] and Proxy Rainbow [6] with Rainbow [9] as central map
Scheme Mult-proxy Tang and Xu's scheme [22] Proxy Rainbow [6]
Delegation Partial with warrant Partial with warrant Partial with warrant
O.S's pub-key $ \frac{mn^2+3mn+2m}{2}\cdot p $ $ (\frac{mn^2+3mn+2m}{2}+\xi)\cdot p $ $ \frac{mn^2+3mn+2m}{2}\cdot p $
P.S's pub-key $ \frac{mn^2+3mn+2m}{2}\cdot p $ $ (\frac{mn^2+3mn+2m}{2}+\xi)\cdot p $ $ \frac{mn^2+3mn+2m}{2}\cdot p $
O.S's sec-key $ (m^2+n^2+m+n+\xi)\cdot p $ $ (m^2+n^2+m+n)\cdot p $ $ (m^2+n^2+m+n+\xi)\cdot p $
P.S's sec-key $ (m^2+n^2+m+n+\xi)\cdot p $ $ (m^2+n^2+m+n)\cdot p $ $ (m^2+n^2+m+n+\xi)\cdot p $
Proxy share $ n\cdot p $ $ \frac{mn^2+2m^2+3mn+2n^2+4m+2n}{2}\cdot p $ $ \frac{mn^2+2m^2+3mn+2n^2+4m+2n}{2}\cdot p $
Proxy sig $ 2k\cdot \omega+(k(m+2n)+n)\cdot p $ $ k+k(m^2+n^2+m+n)\cdot p $ $ \frac{3mn^2+9mn+6m+6n}{2}\cdot p $
Scheme Mult-proxy Tang and Xu's scheme [22] Proxy Rainbow [6]
Delegation Partial with warrant Partial with warrant Partial with warrant
O.S's pub-key $ \frac{mn^2+3mn+2m}{2}\cdot p $ $ (\frac{mn^2+3mn+2m}{2}+\xi)\cdot p $ $ \frac{mn^2+3mn+2m}{2}\cdot p $
P.S's pub-key $ \frac{mn^2+3mn+2m}{2}\cdot p $ $ (\frac{mn^2+3mn+2m}{2}+\xi)\cdot p $ $ \frac{mn^2+3mn+2m}{2}\cdot p $
O.S's sec-key $ (m^2+n^2+m+n+\xi)\cdot p $ $ (m^2+n^2+m+n)\cdot p $ $ (m^2+n^2+m+n+\xi)\cdot p $
P.S's sec-key $ (m^2+n^2+m+n+\xi)\cdot p $ $ (m^2+n^2+m+n)\cdot p $ $ (m^2+n^2+m+n+\xi)\cdot p $
Proxy share $ n\cdot p $ $ \frac{mn^2+2m^2+3mn+2n^2+4m+2n}{2}\cdot p $ $ \frac{mn^2+2m^2+3mn+2n^2+4m+2n}{2}\cdot p $
Proxy sig $ 2k\cdot \omega+(k(m+2n)+n)\cdot p $ $ k+k(m^2+n^2+m+n)\cdot p $ $ \frac{3mn^2+9mn+6m+6n}{2}\cdot p $
Table 2.  Numeric comparison of different key sizes of our scheme Mult-proxy, Tang and Xu's scheme [22] and Proxy Rainbow [6] with Rainbow [9] as central map
Scheme Mult-proxy Tang and Xu's scheme [22] Proxy Rainbow [6]
Parameters (256, 18, 12, 12) (256, 18, 12, 12) (256, 18, 12, 12)
O.S's public key size (kB) $ 177.4 $ $ 297.9 $ $ 177.4 $
P.S's public key size (kB) $ 177.4 $ $ 297.9 $ $ 177.4 $
O.S's secret key size (kB) $ 139.4 $ $ 18.8 $ $ 139.4 $
P.S's secret key size(kB) $ 139.4 $ $ 18.8 $ $ 139.4 $
Proxy share size (kB) $ 0.33 $ $ 196.2 $ $ 196.2 $
Proxy signature size (kB) $ 173.7 $ $ 2424.9 $ $ 533.1 $
Parameters (256, 40, 24, 24) (256, 40, 24, 24) (256, 40, 24, 24)
O.S's public key size (kB) $ 1501.9 $ $ 2542.6 $ $ 1501.9 $
P.S's public key size (kB) $ 1501.9 $ $ 2542.6 $ $ 1501.9 $
O.S's secret key size (kB) $ 1120.2 $ $ 79.6 $ $ 1120.2 $
P.S's secret key size(kB) $ 1120.2 $ $ 79.6 $ $ 1120.2 $
Proxy share size (kB) $ 0.7 $ $ 1581.4 $ $ 1581.4 $
Proxy signature size (kB) $ 290.9 $ $ 10263.7 $ $ 4507.7 $
Parameters (31, 28, 20, 20, 8) (31, 28, 20, 20, 8) (31, 28, 20, 20, 8)
O.S's public key size (kB) $ 938.7 $ $ 1935.5 $ $ 938.7 $
P.S's public key size (kB) $ 938.7 $ $ 1935.5 $ $ 938.7 $
O.S's secret key size (kB) $ 1046.5 $ $ 49.7 $ $ 1046.5 $
P.S's secret key size(kB) $ 1046.5 $ $ 49.7 $ $ 1046.5 $
Proxy share size (kB) $ 0.43 $ $ 988.4 $ $ 988.4 $
Proxy signature size (kB) $ 206 $ $ 6414.8 $ $ 2817.3 $
Scheme Mult-proxy Tang and Xu's scheme [22] Proxy Rainbow [6]
Parameters (256, 18, 12, 12) (256, 18, 12, 12) (256, 18, 12, 12)
O.S's public key size (kB) $ 177.4 $ $ 297.9 $ $ 177.4 $
P.S's public key size (kB) $ 177.4 $ $ 297.9 $ $ 177.4 $
O.S's secret key size (kB) $ 139.4 $ $ 18.8 $ $ 139.4 $
P.S's secret key size(kB) $ 139.4 $ $ 18.8 $ $ 139.4 $
Proxy share size (kB) $ 0.33 $ $ 196.2 $ $ 196.2 $
Proxy signature size (kB) $ 173.7 $ $ 2424.9 $ $ 533.1 $
Parameters (256, 40, 24, 24) (256, 40, 24, 24) (256, 40, 24, 24)
O.S's public key size (kB) $ 1501.9 $ $ 2542.6 $ $ 1501.9 $
P.S's public key size (kB) $ 1501.9 $ $ 2542.6 $ $ 1501.9 $
O.S's secret key size (kB) $ 1120.2 $ $ 79.6 $ $ 1120.2 $
P.S's secret key size(kB) $ 1120.2 $ $ 79.6 $ $ 1120.2 $
Proxy share size (kB) $ 0.7 $ $ 1581.4 $ $ 1581.4 $
Proxy signature size (kB) $ 290.9 $ $ 10263.7 $ $ 4507.7 $
Parameters (31, 28, 20, 20, 8) (31, 28, 20, 20, 8) (31, 28, 20, 20, 8)
O.S's public key size (kB) $ 938.7 $ $ 1935.5 $ $ 938.7 $
P.S's public key size (kB) $ 938.7 $ $ 1935.5 $ $ 938.7 $
O.S's secret key size (kB) $ 1046.5 $ $ 49.7 $ $ 1046.5 $
P.S's secret key size(kB) $ 1046.5 $ $ 49.7 $ $ 1046.5 $
Proxy share size (kB) $ 0.43 $ $ 988.4 $ $ 988.4 $
Proxy signature size (kB) $ 206 $ $ 6414.8 $ $ 2817.3 $
[1]

Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012

[2]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[3]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[4]

Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012

[5]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[6]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

[7]

Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353

[8]

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2020, 14 (4) : 535-553. doi: 10.3934/amc.2020027

[9]

Lidong Chen, Dustin Moody. New mission and opportunity for mathematics researchers: Cryptography in the quantum era. Advances in Mathematics of Communications, 2020, 14 (1) : 161-169. doi: 10.3934/amc.2020013

[10]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[11]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[12]

Sanjit Chatterjee, Berkant Ustaoğlu. Malleability and ownership of proxy signatures: Towards a stronger definition and its limitations. Advances in Mathematics of Communications, 2020, 14 (2) : 177-205. doi: 10.3934/amc.2020015

[13]

Ke Gu, Xinying Dong, Linyu Wang. Efficient traceable ring signature scheme without pairings. Advances in Mathematics of Communications, 2020, 14 (2) : 207-232. doi: 10.3934/amc.2020016

[14]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

[15]

Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249

[16]

Anna-Lena Horlemann-Trautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020089

[17]

Neal Koblitz, Alfred Menezes. Critical perspectives on provable security: Fifteen years of "another look" papers. Advances in Mathematics of Communications, 2019, 13 (4) : 517-558. doi: 10.3934/amc.2019034

[18]

Jie Xu, Lanjun Dang. An efficient RFID anonymous batch authentication protocol based on group signature. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1489-1500. doi: 10.3934/dcdss.2019102

[19]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[20]

Mohammad Sadeq Dousti, Rasool Jalili. FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Advances in Mathematics of Communications, 2015, 9 (4) : 471-514. doi: 10.3934/amc.2015.9.471

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]