\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $

  • * Corresponding author: Xiangyong Zeng

    * Corresponding author: Xiangyong Zeng 

The work was supported by Application foundation frontier project of Wuhan Science and Technology Bureau under Grant 2020010601012189, and by the National Nature Science Foundation of China (NSFC) under Grant 62072161. The work of Sun was supported by the Natural Science Foundation of Hubei under Grant 2019CFB544. The work of Zhang was supported by the Research Foundation of Education Bureau of Hubei Province, China under Grant D2020104

Abstract Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • In this paper, a new class of generalized cyclotomic binary sequences with period $ 4p^n $ is proposed. These sequences are almost balanced, and the explicit formulas of their linear complexity and autocorrelation are presented.

    Mathematics Subject Classification: Primary: 94A55; Secondary: 94A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The autocorrelation distribution of the binary sequence of period $ 108 $

    $ R_{S^{(d,e)}}(\tau) $ $ \tau $
    $ -68 $ $ 1, 11, 13, 23, 25, 35, 37, 47, 49, 59, 61, 71, 73, 83, 85, 95, 97,107 $
    $ 32 $ $ 2, 10, 14, 22, 26, 34, 38, 46, 50, 58, 62, 70, 74, 82, 86, 94, 98,106 $
    $ -4 $ $ 3, 9, 33, 39, 69, 75, 99,105 $
    $ -32 $ $ 4, 8, 16, 20, 28, 32, 40, 44, 52, 56, 64, 68, 76, 80, 88, 92,100,104 $
    $ 68 $ $ 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,101,103 $
    $ -80 $ $ 6, 30, 42, 66, 78,102 $
    $ 80 $ $ 12, 24, 48, 60, 84, 96 $
    $ 4 $ $ 15, 21, 45, 51, 57, 63, 87, 93,99 $
    $ -96 $ $ 18, 90 $
    $ 0 $ $ 27, 81 $
    $ 96 $ $ 36, 72 $
    $ -104 $ $ 54 $
     | Show Table
    DownLoad: CSV
  • [1] E. BaiX. Liu and G. Xiao, Linear complexity of new generalized cyclotomic sequences of order two of length $pq$, IEEE Trans. Inf. Theory, 51 (2005), 1849-1853.  doi: 10.1109/TIT.2005.846450.
    [2] D.M. Burton, Elementary Number Theory, McGram-Hill, New York, 1998.
    [3] T. W. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, Elsevier Science B. V., Amsterdam, 2004.
    [4] C. Ding, Linear complexity of generalized cyclotomic binary sequences of order $2$, Finite Fields Appl., 3 (1997), 159-174.  doi: 10.1006/ffta.1997.0181.
    [5] C. Ding, Autocorrelation values of generalized cyclotomic sequences of order two, IEEE Trans. Inf. Theory, 44 (1998), 1699-1702.  doi: 10.1109/18.681354.
    [6] C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.  doi: 10.1006/ffta.1998.0207.
    [7] C. Ding and T. Helleseth, Generalized cyclotomy codes of length $p^{m_{1}}_{1}p^{m_{2}}_{2}\cdots p^{m_{t}}_{t}$, IEEE Trans. Inf. Theory, 45 (1999), 467-474.  doi: 10.1109/18.748996.
    [8] X. Dong, Linear complexity of generalized cyclotomic binary sequences of length $4p^n$, Inf. Sci. Lett., 4 (2015), 67-70. 
    [9] V. Edemskiy, About computation of the linear complexity of generalized cyclotomic sequences with period $p^{n+1}$, Des. Codes Cryptogr., 61 (2011), 251-260.  doi: 10.1007/s10623-010-9474-9.
    [10] V. Edemskiy and O. Antonova, The evaluation of the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length $2^np^m$, International Journal of Mathematical Models and Methods in Applied Sciences, 9 (2015), 512-517. 
    [11] V. EdemskiyC. LiX. Zeng and T. Helleseth, The linear complexity of generalized cyclotomic binary sequences of period $p^n$, Des. Codes Cryptogr., 87 (2018), 1183-1197.  doi: 10.1007/s10623-018-0513-2.
    [12] V. Edemskiy and C. Wu, On the linear complexity of binary sequences derived from generalized cyclotomic classes modulo $2^np^m$, WSEAS Transactions on Mathematics, 18 (2019), 197-202. 
    [13] C. Fan and G. Ge, A unified approach to Whiteman's and Ding-Helleseth's generalized cyclotomy over residue class rings, IEEE Trans. Inf. Theory, 60 (2014), 1326-1336.  doi: 10.1109/TIT.2013.2290694.
    [14] S. W. Golomb and  G. GongSignal Design for Good Correlation, for Wireless Communications, Cryptography and Radar Applications, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511546907.
    [15] P. KeJ. Zhang and S. Zhang, On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length $2p^n$, Des. Codes Cryptogr., 67 (2013), 325-339.  doi: 10.1007/s10623-012-9610-9.
    [16] Y. J. KimS. Y. Jin and H. Y. Song, Linear complexity and autocorrelation of prime cube sequences, AAECC, LNCS, 4851 (2007), 188-197.  doi: 10.1007/978-3-540-77224-8_23.
    [17] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inf. Theory, 15 (1969), 122-127.  doi: 10.1109/tit.1969.1054260.
    [18] M. B. Nathnson, Elementary Methods in Number Theory, Springer, Berlin, GTM 195, 2003.
    [19] A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121. 
    [20] Z. XiaoX. ZengC. Li and T. Helleseth, New generalized cyclotomic binary sequences of period $p^2$, Des. Codes Cryptogr., 86 (2018), 1483-1497.  doi: 10.1007/s10623-017-0408-7.
    [21] T. YanB. Huang and G. Xiao, Cryptographic properties of some binary generalized cyclotomic sequences with length $p^2$, Inf. Sci., 178 (2008), 1078-1086.  doi: 10.1016/j.ins.2007.02.040.
    [22] T. YanS. Li and G. Xiao, On the linear complexity of generalized cyclotomic sequences with period $p^m$, Appl. Math. Lett., 21 (2008), 187-193.  doi: 10.1016/j.aml.2007.03.011.
    [23] T. Yan and X. Li, Some notes on the generalized cyclotomic binary sequences of length $2p^m$ and $p^m$, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 96 (2013), 2049-2051.  doi: 10.1007/s00200-012-0177-5.
    [24] T. YanR. Sun and G. Xiao, Autocorrelation and linear complexity of the new generalized cyclotomic sequences, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 90 (2007), 857-864. 
    [25] X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.
    [26] J. ZhangC. Zhao and X. Ma, Linear complexity of generalized cyclotomic binary sequences of length $2p^m$, Applicable Algebra in Engineering Communication and Computing, 21 (2010), 93-108.  doi: 10.1007/s00200-009-0116-2.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(927) PDF downloads(582) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return