\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On additive MDS codes over small fields

  • * Corresponding author: Simeon Ball

    * Corresponding author: Simeon Ball 

The first author acknowledges the support of the project MTM2017-82166-P of the Spanish Ministerio de Ciencia y Innovación

Abstract Full Text(HTML) Figure(0) / Table(5) Related Papers Cited by
  • Let $ C $ be a $ (n,q^{2k},n-k+1)_{q^2} $ additive MDS code which is linear over $ {\mathbb F}_q $. We prove that if $ n \geq q+k $ and $ k+1 $ of the projections of $ C $ are linear over $ {\mathbb F}_{q^2} $ then $ C $ is linear over $ {\mathbb F}_{q^2} $. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over $ {\mathbb F}_q $ for $ q \in \{4,8,9\} $. We also classify the longest additive MDS codes over $ {\mathbb F}_{16} $ which are linear over $ {\mathbb F}_4 $. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for $ q \in \{ 2,3\} $.

    Mathematics Subject Classification: Primary: 94B27; Secondary: 51E22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The classification of arcs of lines of $\mathrm{PG}(5, 2)$

    size 4 5 6
    number of arcs of points of $\mathrm{PG}(2, 4)$ 1 1 1
    number of arcs of lines of $\mathrm{PG}(5, 2)$ 1 1 1
     | Show Table
    DownLoad: CSV

    Table 2.  The classification of arcs of planes of PG(8, 2)

    size 4 5 6 7 8 9 10
    number of arcs of points of PG(2, 8) 1 1 3 2 2 2 1
    number of arcs of planes of PG(8, 2) 1 2 4 2 2 2 1
     | Show Table
    DownLoad: CSV

    Table 3.  The classification of arcs of lines of PG(5, 3)

    size 4 5 6 7 8 9 10
    # of arcs of points of PG(2, 9) 1 2 6 3 2 1 1
    # of arcs of lines of PG(5, 3) 1 4 13 4 3 1 1
     | Show Table
    DownLoad: CSV

    Table 4.  The classification of arcs of lines of PG(3, 3)

    size 4 5 6 7 8 9 10
    # of arcs of points of PG(1, 9) 2 2 2 1 1 1 1
    # of arcs of lines of PG(3, 3) 3 4 5 4 3 2 2
     | Show Table
    DownLoad: CSV

    Table 5.  The classification of arcs of lines of $\mathrm{PG}(5, 4)$

    size 5 6 7 8 9 10 11
    # of arcs of $\mathrm{PG}(2, 16)$ 3 22 125 865 1534 1262 300
    # of line-arcs of $\mathrm{PG}(5, 4)$ 10 360 8294 15162 2869 1465 301
    size 12 13 14 15 16 17 18
    # of arcs of $\mathrm{PG}(2, 16)$ 159 70 30 9 5 3 2
    # of line-arcs of $\mathrm{PG}(5, 4)$ 159 70 30 9 5 3 2
     | Show Table
    DownLoad: CSV
  • [1] T. L. Alderson, $(6, 3)$-MDS codes over an alphabet of size $4$, Des. Codes Cryptogr, 38 (2006), 31–40. doi: 10.1007/s10623-004-5659-4.
    [2] S. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012), 733–748. doi: 10.4171/JEMS/316.
    [3] S. Ball and M. Lavrauw, Arcs in finite projective spaces, EMS Surv. Math. Sci., 6 (2019), 133–172. doi: 10.4171/emss/33.
    [4] A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, Error-Correcting Linear Codes. Classification by Isometry and Applications, Algorithms and Computation in Mathematics 18, Springer, 2006.
    [5] A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161–167. doi: 10.1016/S0195-6698(03)00096-9.
    [6] K. Bogart, D. Goldberg and J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes, Inform and Control, 37 (1978), 19–22. doi: 10.1016/S0019-9958(78)90389-3.
    [7] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics, 23 (1952), 426–434. doi: 10.1214/aoms/1177729387.
    [8] P. Dembowski, Finite Geometries, Reprint of the 1968 original. Classics in Mathematics. Springer-Verlag, Berlin, 1997.
    [9] J. Bamberg, A. Betten, Ph. Cara, J. De Beule, M. Lavrauw and M. Neunhöffer, Finite Incidence Geometry, FinInG–a GAP Package, Version 1.4.1, 2018. https://www.gap-system.org/Packages/fining.html.
    [10] G. A. Gamboa Quintero, Additive MDS codes, Master's Thesis, Universitat Politècnica Catalunya, 2020.
    [11] The GAP Group, GAP – Groups, Algorithms, Programming -a System for Computational Discrete Algebra, Version 4.11.0, 2020. https://www.gap-system.org.
    [12] L. H. Soicher, GAP Package GRAPE, Version 4.8.5, 2021. https://gap-packages.github.io/grape.
    [13] M. Grassl and M. Rötteler, Quantum MDS codes over small fields, in Proc. Int. Symp. Inf. Theory (ISIT), (2015), 1104–1108, arXiv: 1502.05267. doi: 10.1109/ISIT.2015.7282626.
    [14] J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: Update 2001, Finite Geometries, Dev. Math., Kluwer Acad. Publ, Dordrecht, 3 (2001), 201-246.  doi: 10.1007/978-1-4613-0283-4_13.
    [15] F. Huber and M. Grassl, Quantum codes of maximal distance and highly entangled subspaces, Quantum, 4 (2020), 284, arXiv: 1907.07733. doi: 10.22331/q-2020-06-18-284.
    [16] A. KetkarA. KlappeneckerS. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.
    [17] J. I. Kokkala, D. S. Krotov and P. R. J. Östergård, On the classification of MDS codes, IEEE Trans. Inf. Theory, 61 (2015), 6485–6492. doi: 10.1109/TIT.2015.2488659.
    [18] J. I. Kokkala and P. R. J. Östergård, Further results on the classification of MDS codes, Adv. Math. Commun., 10 (2016), 489–498. doi: 10.3934/amc.2016020.
    [19] M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, in: Contemporary Mathematics, (eds: G Kyureghyan, GL Mullen, and A Pott), American Mathematical Society, 632 (2015), 271–293. doi: 10.1090/conm/632/12633.
    [20] S. Linton, Finding the smallest image of a set, in: ISSAC '04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, 2004 (2004), 229–234. doi: 10.1145/1005285.1005319.
    [21] L. Lunelli and M. Sce, Considerazione aritmetiche e risultati sperimentali sui $\{K; n\}_q$-archi, Ist. Lombardo Accad. Sci. Rend. A, 98 (1964), 3-52. 
    [22] F. J. MacWilliams, Combinatorial Problems of Elementary Abelian Groups, Thesis (Ph.D.)–Radcliffe College, 1962.
    [23] K. Shiromoto, Note on MDS codes over the integers modulo $p^{m}$,, Hokkaido Mathematical Journal, 29 (2000), 149–157. doi: 10.14492/hokmj/1350912961.
    [24] L. H. Soicher, Computation of partial spreads web-page, http://www.maths.qmul.ac.uk/~lsoicher/partialspreads/
    [25] H. N. Ward and J. A. Wood, Characters and the equivalence of codes, J. Combin. Theory Ser. A, 73 (1996), 348–352. doi: 10.1016/S0097-3165(96)80011-2.
  • 加载中

Tables(5)

SHARE

Article Metrics

HTML views(2472) PDF downloads(635) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return