doi: 10.3934/amc.2021025
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Four by four MDS matrices with the fewest XOR gates based on words

1. 

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, China

2. 

State Key Laboratory of Information Security, Institute of Information Engineering, , University of Chinese Academy of Sciences, Beijing, China

* Corresponding author: Xiangyong Zeng

Received  April 2021 Revised  May 2021 Early access July 2021

Fund Project: Xiangyong Zeng was supported by Application Foundation Frontier Project of Wuhan Science and Technology Bureau under Grant 2020010601012189 and National Natural Science Foundation of China under Grant 61761166010. Yongqiang Li was supported by National Natural Science Foundation of China under Grant 61772517

MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found $ 16\times16 $ and $ 32\times 32 $ MDS matrices over $ \mathbb{F}_2 $ with only $ 35 $ xor gates and $ 67 $ xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with $ 35 $ and $ 67 $ xor gates. In addition, some $ 16\times16 $ or $ 32\times32 $ involutory MDS matrices with only $ 36 $ or $ 72 $ xor gates over $ \mathbb{F}_2 $ are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for $ 4 \times 4 $ MDS matrix over general linear groups is $ 8n+2 $.

Citation: Shi Wang, Yongqiang Li, Shizhu Tian, Xiangyong Zeng. Four by four MDS matrices with the fewest XOR gates based on words. Advances in Mathematics of Communications, doi: 10.3934/amc.2021025
References:
[1]

R. Avanzi, The QARMA block cipher family. Almost MDS matrices over rings with zero divisors, nearly symmetric even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency s-boxes, IACR Trans. Symmetric Cryptol., 2017 (2017), 4-44.  doi: 10.46586/tosc.v2017.i1.4-44.  Google Scholar

[2]

S. BanikA. BogdanovT. IsobeK. ShibutaniH. HiwatariT. Akishita and F. Regazzoni, Midori: A block cipher for low energy (extended version), ASIACRYPT 2015, Lecture Notes in Computer Science, 9453 (2015), 411-436.  doi: 10.1007/978-3-662-48800-3_17.  Google Scholar

[3]

S. Banik, Y. Funabiki and T. Isobe, More results on shortest linear programs, Advances in Information and Computer Security - 14th International Workshop on Security, IWSEC 2019, Lecture Notes in Computer Science, 11689 (2019), 109–128. doi: 10.1007/978-3-030-26834-3_7.  Google Scholar

[4]

S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim and Y. Todo, GIFT: A small present - towards reaching the limit of lightweight encryption, In: Cryptographic Hardware and Embedded Systems 2017, Lecture Notes in Computer Science, 10529 (2017), 321–345. doi: 10.1007/978-3-319-66787-4\_16.  Google Scholar

[5]

C. BeierleT. Kranz and G. Leander, Lightweight multiplication in ${\rm{GF}}(2^n)$ with applications to MDS matrices, CRYPTO 2016, Lecture Notes in Computer Science, 9814 (2016), 625-653.  doi: 10.1007/978-3-662-53018-4_23.  Google Scholar

[6]

A. BogdanovL. R. KnudsenG. LeanderC. PaarA. PoschmannM. J. B. RobshawY. Seurin and C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, Cryptographic Hardware and Embedded Systems 2007, 4227 (2007), 450-466.  doi: 10.1007/978-3-540-74735-2_31.  Google Scholar

[7]

J. BorghoffA. CanteautT. GüneysuE. B. KavunM. KnezevicL. R. KnudsenG. LeanderV. NikovC. PaarC. RechbergerP. RomboutsS. S. Thomsen and T. Yalç, PRINCE - A low-latency block cipher for pervasive computing applications - extended abstract, ASIACRYPT 2012, Lecture Notes in Computer Science, 7658 (2012), 208-225.  doi: 10.1007/978-3-642-34961-4\_14.  Google Scholar

[8]

J. BoyarP. Matthews and R. Peralta, Logic minimization techniques with applications to cryptology, J. Cryptology, 26 (2013), 280-312.  doi: 10.1007/s00145-012-9124-7.  Google Scholar

[9]

J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard, Information Security and Cryptography. Springer, 2002. doi: 10.1007/978-3-662-04722-4.  Google Scholar

[10]

S. Duval and G. Leurent, MDS matrices with lightweight circuits, IACR Trans. Symmetric Cryptol., 2018 (2018), 48-78.  doi: 10.13154/tosc.v2018.i2.48-78.  Google Scholar

[11]

J. GuoT. Peyrin and A. Poschmann, The PHOTON family of lightweight hash functions, CRYPTO 2011, Lecture Notes in Computer Science, 6841 (2011), 222-239.  doi: 10.1007/978-3-642-22792-9_13.  Google Scholar

[12]

J. GuoT. PeyrinA. Poschmann and M. J. B. Robshaw, The LED block cipher, Cryptographic Hardware and Embedded Systems 2011, Lecture Notes in Computer Science, 6917 (2011), 326-341.  doi: 10.1007/978-3-642-23951-9_22.  Google Scholar

[13]

J. JeanT. PeyrinS. M. Sim and J. Tourteaux, Optimizing implementations of lightweight building blocks, IACR Trans. Symmetric Cryptol., 2017 (2017), 130-168.  doi: 10.13154/tosc.v2017.i4.130-168.  Google Scholar

[14]

T. KranzG. LeanderK. Stoffelen and F. Wiemer, Shorter linear straight-line programs for MDS matrices, IACR Trans. Symmetric Cryptol., 2017 (2017), 188-211.  doi: 10.46586/tosc.v2017.i4.188-211.  Google Scholar

[15]

C. Li and Q. Wang, Design of lightweight linear diffusion layers from near-mds matrices, IACR Trans. Symmetric Cryptol., 2017 (2017), 129-155.  doi: 10.13154/tosc.v2017.i1.129-155.  Google Scholar

[16]

S. LiS. SunC. LiZ. Wei and L. Hu, Constructing low-latency involutory MDS matrices with lightweight circuits, IACR Trans. Symmetric Cryptol., 2019 (2019), 84-117.  doi: 10.46586/tosc.v2019.i1.84-117.  Google Scholar

[17]

Y. Li and M. Wang, On the construction of lightweight circulant involutory MDS matrices, Fast Software Encryption 2016, Lecture Notes in Computer Science, 9783 (2016), 121-139.  doi: 10.1007/978-3-662-52993-5_7.  Google Scholar

[18]

M. Liu and S. M. Sim, Lightweight MDS generalized circulant matrices, Fast Software Encryption 2016, Lecture Notes in Computer Science, 9783 (2016), 101-120.  doi: 10.1007/978-3-662-52993-5_6.  Google Scholar

[19]

F. J. Macwilliams and N. J. A. Sloane, The theory of error correcting codes, North-Holland Mathematical Library, Amsterdam-New York Oxford: North-Holland Publishing Company, 16 (1977), 370-762.   Google Scholar

[20]

S. Sarkar and H. Syed, Lightweight diffusion layer: Importance of toeplitz matrices, ACR Trans. Symmetric Cryptol., 2016 (2016), 95-113.  doi: 10.13154/tosc.v2016.i1.95-113.  Google Scholar

[21]

S. M. SimK. KhooF. E. Oggier and T. Peyrin, Lightweight MDS involution matrices, Fast Software Encryption 2015, 9054 (2015), 471-493.  doi: 10.1007/978-3-662-48116-5_23.  Google Scholar

[22]

F. X. StandaertG. PiretG. RouvroyJ. J. Quisquater and J. D. Legat, ICEBERG: An involutional cipher effcient for block encryption in reconfigurable hardware, Fast Software Encryption 2004, 3017 (2004), 279-299.   Google Scholar

[23]

Q. Q Tan and T. Peyrin, Improved heuristics for short linear programs, IACR Trans. Cryptogr., 2020 (2020), 203-230.  doi: 10.13154/tches.v2020.i1.203-230.  Google Scholar

[24]

A. ViscontiC. V. Schiavo and R. Peralta, Improved upper bounds for the expected circuit complexity of dense systems of linear equations over ${\rm{GF}}(2)$, Information Processing Letters, 137 (2018), 1-5.  doi: 10.1016/j.ipl.2018.04.010.  Google Scholar

[25]

S. WuM. Wang and W. Wu, Recursive diffusion layers for (lightweight) block ciphers and hash functions, Selected Areas in Cryptography 2012, Lecture Notes in Computer Science, 7707 (2012), 355-371.  doi: 10.1007/978-3-642-35999-6_23.  Google Scholar

[26]

Z. XiangX. ZengD. LinZ. Bao and S. Zhang, Optimizing implementations of linear layers, IACR Trans. Symmetric Cryptol., 2020 (2020), 120-145.  doi: 10.46586/tosc.v2020.i2.120-145.  Google Scholar

[27]

W. ZhangZ. BaoD. LinV. RijmenB. Yang and I. Verbauwhede, RECTANGLE: A bit-slice lightweight block cipher suitable for multiple platforms, Science China Information Sciences, 58 (2015), 1-15.  doi: 10.1007/s11432-015-5459-7.  Google Scholar

[28]

L. ZhouL. Wang and Y. Sun, On efficient constructions of lightweight MDS matrices, IACR Trans. Symmetric Cryptol., 2018 (2018), 180-200.  doi: 10.46586/tosc.v2018.i1.180-200.  Google Scholar

show all references

References:
[1]

R. Avanzi, The QARMA block cipher family. Almost MDS matrices over rings with zero divisors, nearly symmetric even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency s-boxes, IACR Trans. Symmetric Cryptol., 2017 (2017), 4-44.  doi: 10.46586/tosc.v2017.i1.4-44.  Google Scholar

[2]

S. BanikA. BogdanovT. IsobeK. ShibutaniH. HiwatariT. Akishita and F. Regazzoni, Midori: A block cipher for low energy (extended version), ASIACRYPT 2015, Lecture Notes in Computer Science, 9453 (2015), 411-436.  doi: 10.1007/978-3-662-48800-3_17.  Google Scholar

[3]

S. Banik, Y. Funabiki and T. Isobe, More results on shortest linear programs, Advances in Information and Computer Security - 14th International Workshop on Security, IWSEC 2019, Lecture Notes in Computer Science, 11689 (2019), 109–128. doi: 10.1007/978-3-030-26834-3_7.  Google Scholar

[4]

S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim and Y. Todo, GIFT: A small present - towards reaching the limit of lightweight encryption, In: Cryptographic Hardware and Embedded Systems 2017, Lecture Notes in Computer Science, 10529 (2017), 321–345. doi: 10.1007/978-3-319-66787-4\_16.  Google Scholar

[5]

C. BeierleT. Kranz and G. Leander, Lightweight multiplication in ${\rm{GF}}(2^n)$ with applications to MDS matrices, CRYPTO 2016, Lecture Notes in Computer Science, 9814 (2016), 625-653.  doi: 10.1007/978-3-662-53018-4_23.  Google Scholar

[6]

A. BogdanovL. R. KnudsenG. LeanderC. PaarA. PoschmannM. J. B. RobshawY. Seurin and C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, Cryptographic Hardware and Embedded Systems 2007, 4227 (2007), 450-466.  doi: 10.1007/978-3-540-74735-2_31.  Google Scholar

[7]

J. BorghoffA. CanteautT. GüneysuE. B. KavunM. KnezevicL. R. KnudsenG. LeanderV. NikovC. PaarC. RechbergerP. RomboutsS. S. Thomsen and T. Yalç, PRINCE - A low-latency block cipher for pervasive computing applications - extended abstract, ASIACRYPT 2012, Lecture Notes in Computer Science, 7658 (2012), 208-225.  doi: 10.1007/978-3-642-34961-4\_14.  Google Scholar

[8]

J. BoyarP. Matthews and R. Peralta, Logic minimization techniques with applications to cryptology, J. Cryptology, 26 (2013), 280-312.  doi: 10.1007/s00145-012-9124-7.  Google Scholar

[9]

J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard, Information Security and Cryptography. Springer, 2002. doi: 10.1007/978-3-662-04722-4.  Google Scholar

[10]

S. Duval and G. Leurent, MDS matrices with lightweight circuits, IACR Trans. Symmetric Cryptol., 2018 (2018), 48-78.  doi: 10.13154/tosc.v2018.i2.48-78.  Google Scholar

[11]

J. GuoT. Peyrin and A. Poschmann, The PHOTON family of lightweight hash functions, CRYPTO 2011, Lecture Notes in Computer Science, 6841 (2011), 222-239.  doi: 10.1007/978-3-642-22792-9_13.  Google Scholar

[12]

J. GuoT. PeyrinA. Poschmann and M. J. B. Robshaw, The LED block cipher, Cryptographic Hardware and Embedded Systems 2011, Lecture Notes in Computer Science, 6917 (2011), 326-341.  doi: 10.1007/978-3-642-23951-9_22.  Google Scholar

[13]

J. JeanT. PeyrinS. M. Sim and J. Tourteaux, Optimizing implementations of lightweight building blocks, IACR Trans. Symmetric Cryptol., 2017 (2017), 130-168.  doi: 10.13154/tosc.v2017.i4.130-168.  Google Scholar

[14]

T. KranzG. LeanderK. Stoffelen and F. Wiemer, Shorter linear straight-line programs for MDS matrices, IACR Trans. Symmetric Cryptol., 2017 (2017), 188-211.  doi: 10.46586/tosc.v2017.i4.188-211.  Google Scholar

[15]

C. Li and Q. Wang, Design of lightweight linear diffusion layers from near-mds matrices, IACR Trans. Symmetric Cryptol., 2017 (2017), 129-155.  doi: 10.13154/tosc.v2017.i1.129-155.  Google Scholar

[16]

S. LiS. SunC. LiZ. Wei and L. Hu, Constructing low-latency involutory MDS matrices with lightweight circuits, IACR Trans. Symmetric Cryptol., 2019 (2019), 84-117.  doi: 10.46586/tosc.v2019.i1.84-117.  Google Scholar

[17]

Y. Li and M. Wang, On the construction of lightweight circulant involutory MDS matrices, Fast Software Encryption 2016, Lecture Notes in Computer Science, 9783 (2016), 121-139.  doi: 10.1007/978-3-662-52993-5_7.  Google Scholar

[18]

M. Liu and S. M. Sim, Lightweight MDS generalized circulant matrices, Fast Software Encryption 2016, Lecture Notes in Computer Science, 9783 (2016), 101-120.  doi: 10.1007/978-3-662-52993-5_6.  Google Scholar

[19]

F. J. Macwilliams and N. J. A. Sloane, The theory of error correcting codes, North-Holland Mathematical Library, Amsterdam-New York Oxford: North-Holland Publishing Company, 16 (1977), 370-762.   Google Scholar

[20]

S. Sarkar and H. Syed, Lightweight diffusion layer: Importance of toeplitz matrices, ACR Trans. Symmetric Cryptol., 2016 (2016), 95-113.  doi: 10.13154/tosc.v2016.i1.95-113.  Google Scholar

[21]

S. M. SimK. KhooF. E. Oggier and T. Peyrin, Lightweight MDS involution matrices, Fast Software Encryption 2015, 9054 (2015), 471-493.  doi: 10.1007/978-3-662-48116-5_23.  Google Scholar

[22]

F. X. StandaertG. PiretG. RouvroyJ. J. Quisquater and J. D. Legat, ICEBERG: An involutional cipher effcient for block encryption in reconfigurable hardware, Fast Software Encryption 2004, 3017 (2004), 279-299.   Google Scholar

[23]

Q. Q Tan and T. Peyrin, Improved heuristics for short linear programs, IACR Trans. Cryptogr., 2020 (2020), 203-230.  doi: 10.13154/tches.v2020.i1.203-230.  Google Scholar

[24]

A. ViscontiC. V. Schiavo and R. Peralta, Improved upper bounds for the expected circuit complexity of dense systems of linear equations over ${\rm{GF}}(2)$, Information Processing Letters, 137 (2018), 1-5.  doi: 10.1016/j.ipl.2018.04.010.  Google Scholar

[25]

S. WuM. Wang and W. Wu, Recursive diffusion layers for (lightweight) block ciphers and hash functions, Selected Areas in Cryptography 2012, Lecture Notes in Computer Science, 7707 (2012), 355-371.  doi: 10.1007/978-3-642-35999-6_23.  Google Scholar

[26]

Z. XiangX. ZengD. LinZ. Bao and S. Zhang, Optimizing implementations of linear layers, IACR Trans. Symmetric Cryptol., 2020 (2020), 120-145.  doi: 10.46586/tosc.v2020.i2.120-145.  Google Scholar

[27]

W. ZhangZ. BaoD. LinV. RijmenB. Yang and I. Verbauwhede, RECTANGLE: A bit-slice lightweight block cipher suitable for multiple platforms, Science China Information Sciences, 58 (2015), 1-15.  doi: 10.1007/s11432-015-5459-7.  Google Scholar

[28]

L. ZhouL. Wang and Y. Sun, On efficient constructions of lightweight MDS matrices, IACR Trans. Symmetric Cryptol., 2018 (2018), 180-200.  doi: 10.46586/tosc.v2018.i1.180-200.  Google Scholar

Figure 1.  The implementations circuit of paths in $ 6 $ classes
Figure 2.  The implementation circuit of MDS matrix $ M $ based on words
Table 1.  Comparison with MDS matrices with fewest xor gates ($ \alpha_1 $ is the companion matrix of $ X^4 + X + 1 $, and $ \alpha_2 $ is the companion matrix of $ X^8 + X^2 + 1 = \left(X^4 + X + 1\right)^2 $)
Size Ring Type Best Ref
n=4 $ \mathbb{F}_2[\alpha_1] $ non-involutory $ 35 $ [10]
$ \mathbb{F}_2[\alpha_1] $ non-involutory $ 35 $ Section 4.2
$ \mathbb{F}_2[\alpha_1] $ involutory $ 42 $ [20]
$ \mathbb{F}_2[\alpha_1] $ involutory $ 36 $ Section 4.3
n=8 $ \mathbb{F}_{2^8} $ AES $ 92 $ [26]
$ \mathbb{F}_2[\alpha_2] $ non-involutory $ 67 $ [10]
$ \mathbb{F}_2[\alpha_2] $ non-involutory $ 67 $ Section 4.2
$ \mathrm{GL}(8, \, \mathbb{F}_2) $ involutory $ 84 $ [14]
$ \mathbb{F}_2[\alpha_2] $ involutory $ 78 $ [16]
$ \mathbb{F}_2[\alpha_2] $ involutory $ 72 $ Section 4.3
Size Ring Type Best Ref
n=4 $ \mathbb{F}_2[\alpha_1] $ non-involutory $ 35 $ [10]
$ \mathbb{F}_2[\alpha_1] $ non-involutory $ 35 $ Section 4.2
$ \mathbb{F}_2[\alpha_1] $ involutory $ 42 $ [20]
$ \mathbb{F}_2[\alpha_1] $ involutory $ 36 $ Section 4.3
n=8 $ \mathbb{F}_{2^8} $ AES $ 92 $ [26]
$ \mathbb{F}_2[\alpha_2] $ non-involutory $ 67 $ [10]
$ \mathbb{F}_2[\alpha_2] $ non-involutory $ 67 $ Section 4.2
$ \mathrm{GL}(8, \, \mathbb{F}_2) $ involutory $ 84 $ [14]
$ \mathbb{F}_2[\alpha_2] $ involutory $ 78 $ [16]
$ \mathbb{F}_2[\alpha_2] $ involutory $ 72 $ Section 4.3
Table 2.  Circuit implementation of the matrix $ M_0 $ using extra registers
No. Operation No. Operation No. Operation
1 $ x_6\leftarrow x_1+x_3 $ 2 $ x_7 \leftarrow x_6+x_5 $ 3 $ x_8 \leftarrow x_0+x_7[y_0] $
4 $ x_{9} \leftarrow x_2+x_7[y_2] $ 5 $ x_{10} \leftarrow x_4+x_7[y_4] $ 6 $ x_{11} \leftarrow x_{10}+x_0 $
7 $ x_{12} \leftarrow x_{11}+x_2 $ 8 $ x_{13} \leftarrow x_{12}+x_{1}[y_1] $ 9 $ x_{14} \leftarrow x_{12}+x_3[y_3] $
10 $ x_{14} \leftarrow x_{12}+x_5[y_5] $
No. Operation No. Operation No. Operation
1 $ x_6\leftarrow x_1+x_3 $ 2 $ x_7 \leftarrow x_6+x_5 $ 3 $ x_8 \leftarrow x_0+x_7[y_0] $
4 $ x_{9} \leftarrow x_2+x_7[y_2] $ 5 $ x_{10} \leftarrow x_4+x_7[y_4] $ 6 $ x_{11} \leftarrow x_{10}+x_0 $
7 $ x_{12} \leftarrow x_{11}+x_2 $ 8 $ x_{13} \leftarrow x_{12}+x_{1}[y_1] $ 9 $ x_{14} \leftarrow x_{12}+x_3[y_3] $
10 $ x_{14} \leftarrow x_{12}+x_5[y_5] $
Table 3.  Elementary matrices of Type $\rm{III}$ for $\beta\in\mathbb{F}^*_{2^n}$
$\overline{\mathbf{1}}$ $\overline{\mathbf{2}}$ $\overline{\mathbf{3}}$ $\overline{\mathbf{4}}$ $\overline{\mathbf{5}}$ $\overline{\mathbf{6}}$ $\overline{\mathbf{7}}$ $\overline{\mathbf{8}}$ $\overline{\mathbf{9}}$ $\overline{\mathbf{10}}$ $\overline{\mathbf{11}}$ $\overline{\mathbf{12}}$
$E_{(12)}$ $E_{(13)}$ $ E_{(14)}$ $ E_{(21)} $ $ E_{(23)} $ $ E_{(24)}$ $E_{(31)}$ $ E_{(32)}$ $ E_{(34)}$ $ E_{(41)}$ $E_{(42)}$ $ E_{(43)}$
$\overline{\mathbf{1}}$ $\overline{\mathbf{2}}$ $\overline{\mathbf{3}}$ $\overline{\mathbf{4}}$ $\overline{\mathbf{5}}$ $\overline{\mathbf{6}}$ $\overline{\mathbf{7}}$ $\overline{\mathbf{8}}$ $\overline{\mathbf{9}}$ $\overline{\mathbf{10}}$ $\overline{\mathbf{11}}$ $\overline{\mathbf{12}}$
$E_{(12)}$ $E_{(13)}$ $ E_{(14)}$ $ E_{(21)} $ $ E_{(23)} $ $ E_{(24)}$ $E_{(31)}$ $ E_{(32)}$ $ E_{(34)}$ $ E_{(41)}$ $E_{(42)}$ $ E_{(43)}$
Table 4.  Dividing the $32$ paths into $6$ classes
$1$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{11}}, \overline{\mathbf{7}}, \overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{11}}, \overline{\mathbf{7}}, \overline{\mathbf{3}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$
$2$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$
$(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$
$3$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{2}}, \overline{\mathbf{6}}, \overline{\mathbf{8}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{2}}, \overline{\mathbf{6}}, \overline{\mathbf{8}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$
$4$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{10}}, \overline{\mathbf{8}}, \overline{\mathbf{6}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{10}}, \overline{\mathbf{8}}, \overline{\mathbf{6}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$
$5$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$
$(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$
$6$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{5}}, \overline{\mathbf{3}}, \overline{\mathbf{7}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{5}}, \overline{\mathbf{3}}, \overline{\mathbf{7}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$
$1$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{11}}, \overline{\mathbf{7}}, \overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{11}}, \overline{\mathbf{7}}, \overline{\mathbf{3}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$
$2$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$
$(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{1}}, \overline{\mathbf{9}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{5}}, \overline{\mathbf{10}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}}, \overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{5}})$
$3$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{2}}, \overline{\mathbf{6}}, \overline{\mathbf{8}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{2}}, \overline{\mathbf{6}}, \overline{\mathbf{8}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{4}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{1}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{12}}, \overline{\mathbf{4}})$
$4$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{8}}, \overline{\mathbf{10}}, \overline{\mathbf{6}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{10}}, \overline{\mathbf{8}}, \overline{\mathbf{6}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{10}}, \overline{\mathbf{8}}, \overline{\mathbf{6}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$
$5$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$
$(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{4}}, \overline{\mathbf{9}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{2}}, \overline{\mathbf{11}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}}, \overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{2}})$
$6$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{3}}, \overline{\mathbf{5}}, \overline{\mathbf{7}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{5}}, \overline{\mathbf{3}}, \overline{\mathbf{7}}, \overline{\mathbf{1}}, \overline{\mathbf{12}})$ $(\overline{\mathbf{9}}, \overline{\mathbf{4}}, \overline{\mathbf{11}}, \overline{\mathbf{5}}, \overline{\mathbf{3}}, \overline{\mathbf{7}}, \overline{\mathbf{12}}, \overline{\mathbf{1}})$
Table 5.  The minimal polynomial is $x^4+x+1 = 0$ and $A = \mathrm{companion}(1, 1, 0, 0)$
No. $M_{11}$ $M_{12}$ $M_{13}$ $M_{14}$ $M_{21}$ $M_{22}$ $M_{23}$ $M_{24}$
$1$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$2$ $A$ $A + I + A^3$ $I + A^3$ $A^3$ $A$ $A + A^3$ $A^3$ $I + A^3$
$3$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$4$ $I$ $A^2 + A^3$ $I + A^2 + A^3$ $A^2$ $I$ $I + A^2$ $A^2$ $I + A^2 + A^3$
$5$ $I + A^3$ $A + I + A^3$ $A$ $A + I$ $I + A^3$ $A + A^3$ $A + I$ $A$
$6$ $I$ $A^2 + A^3$ $I + A^2 + A^3$ $A^2$ $I$ $I + A^2$ $A^2$ $I + A^2 + A^3$
$7$ $I$ $A + I$ $A$ $A$ $A^2$ $A + A^2$ $A + I$ $I$
$8$ $I$ $A + I$ $A$ $A$ $A$ $A + I$ $A^3$ $I + A^3$
$9$ $I$ $A^3$ $I + A^3$ $I + A^3$ $I + A^3$ $A^3$ $A + I$ $A$
$10$ $I$ $A^3$ $I + A^3$ $I + A^3$ $I + A^2 + A^3$ $A^2$ $A^3$ $I$
No. $M_{31}$ $M_{32}$ $M_{33}$ $M_{34}$ $M_{41}$ $M_{42}$ $M_{43}$ $M_{44}$
$1$ $A$ $A$ $I$ $I$ $A$ $A + A^2$ $I + A^2$ $A + I + A^2$
$2$ $I$ $I$ $A$ $A$ $I$ $A^3$ $A + I + A^3$ $A + A^3$
$3$ $I$ $I$ $I + A^3$ $I + A^3$ $I$ $A + I$ $A + I + A^3$ $A + A^3$
$4$ $I$ $I$ $A$ $A$ $I$ $A^3$ $A + I + A^3$ $A + A^3$
$5$ $I$ $I$ $I + A^3$ $I + A^3$ $I$ $A + I$ $A + I + A^3$ $A + A^3$
$6$ $I + A^3$ $I + A^3$ $I$ $I$ $I + A^3$ $A^2$ $A^2 + A^3$ $I + A^2$
$7$ $A^2$ $A^2$ $I$ $A + I$ $A + I$ $I$ $A$ $A + I$
$8$ $A$ $A$ $I + A^3$ $A^3$ $A + I$ $I$ $A$ $A + I$
$9$ $I + A^3$ $I + A^3$ $A$ $A + I$ $A^3$ $I$ $I + A^3$ $A^3$
$10$ $I + A^2 + A^3$ $I + A^2 + A^3$ $I$ $A^3$ $A^3$ $I$ $I + A^3$ $A^3$
No. $M_{11}$ $M_{12}$ $M_{13}$ $M_{14}$ $M_{21}$ $M_{22}$ $M_{23}$ $M_{24}$
$1$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$2$ $A$ $A + I + A^3$ $I + A^3$ $A^3$ $A$ $A + A^3$ $A^3$ $I + A^3$
$3$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$4$ $I$ $A^2 + A^3$ $I + A^2 + A^3$ $A^2$ $I$ $I + A^2$ $A^2$ $I + A^2 + A^3$
$5$ $I + A^3$ $A + I + A^3$ $A$ $A + I$ $I + A^3$ $A + A^3$ $A + I$ $A$
$6$ $I$ $A^2 + A^3$ $I + A^2 + A^3$ $A^2$ $I$ $I + A^2$ $A^2$ $I + A^2 + A^3$
$7$ $I$ $A + I$ $A$ $A$ $A^2$ $A + A^2$ $A + I$ $I$
$8$ $I$ $A + I$ $A$ $A$ $A$ $A + I$ $A^3$ $I + A^3$
$9$ $I$ $A^3$ $I + A^3$ $I + A^3$ $I + A^3$ $A^3$ $A + I$ $A$
$10$ $I$ $A^3$ $I + A^3$ $I + A^3$ $I + A^2 + A^3$ $A^2$ $A^3$ $I$
No. $M_{31}$ $M_{32}$ $M_{33}$ $M_{34}$ $M_{41}$ $M_{42}$ $M_{43}$ $M_{44}$
$1$ $A$ $A$ $I$ $I$ $A$ $A + A^2$ $I + A^2$ $A + I + A^2$
$2$ $I$ $I$ $A$ $A$ $I$ $A^3$ $A + I + A^3$ $A + A^3$
$3$ $I$ $I$ $I + A^3$ $I + A^3$ $I$ $A + I$ $A + I + A^3$ $A + A^3$
$4$ $I$ $I$ $A$ $A$ $I$ $A^3$ $A + I + A^3$ $A + A^3$
$5$ $I$ $I$ $I + A^3$ $I + A^3$ $I$ $A + I$ $A + I + A^3$ $A + A^3$
$6$ $I + A^3$ $I + A^3$ $I$ $I$ $I + A^3$ $A^2$ $A^2 + A^3$ $I + A^2$
$7$ $A^2$ $A^2$ $I$ $A + I$ $A + I$ $I$ $A$ $A + I$
$8$ $A$ $A$ $I + A^3$ $A^3$ $A + I$ $I$ $A$ $A + I$
$9$ $I + A^3$ $I + A^3$ $A$ $A + I$ $A^3$ $I$ $I + A^3$ $A^3$
$10$ $I + A^2 + A^3$ $I + A^2 + A^3$ $I$ $A^3$ $A^3$ $I$ $I + A^3$ $A^3$
Table 6.  The decompositions of $10$ classes of MDS matrices with $8n+3$ sw-xor
$M_1$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})E_{(4)}(A)\overline{\mathbf{11}}(\mathbf{1}) \overline{\mathbf{7}}(A)E_{(2)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_2$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})\overline{\mathbf{11}}(A^{-1})E_{(1)}(A) \overline{\mathbf{7}}(\mathbf{1})E_{(3)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_3$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(A)\overline{\mathbf{11}}(\mathbf{1}) \overline{\mathbf{7}}(\mathbf{1})E_{(2)}(A)E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_4$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(A^{-1})\overline{\mathbf{11}}(\mathbf{1})E_{(2)}(A^{-\mathbf{1}}) \overline{\mathbf{7}}(\mathbf{1})E_{(3)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_5$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})\overline{\mathbf{11}}(A)E_{(1)}(A^{-1}) \overline{\mathbf{7}}(\mathbf{1})E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_6$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})E_{(4)}(A^{-1})\overline{\mathbf{11}}(\mathbf{1}) \overline{\mathbf{7}}(A^{-1})E_{(2)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$ M_7$ $\overline{\mathbf{10}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(A)\overline{\mathbf{\mathbf{1}}}(\mathbf{1}) \overline{\mathbf{10}}(A)E_{(2)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$ M_8$ $\overline{\mathbf{\mathbf{1}0}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(A) \overline{\mathbf{\mathbf{1}0}}(A)E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$ M_9$ $\overline{\mathbf{10}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(A^{-1}) \overline{\mathbf{10}}(A^{-1})E_{(3)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$ M_{10}$ $\overline{\mathbf{10}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(A^{-1})\overline{\mathbf{1}}(\mathbf{1}) \overline{\mathbf{10}}(A^{-1})E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$M_1$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})E_{(4)}(A)\overline{\mathbf{11}}(\mathbf{1}) \overline{\mathbf{7}}(A)E_{(2)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_2$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})\overline{\mathbf{11}}(A^{-1})E_{(1)}(A) \overline{\mathbf{7}}(\mathbf{1})E_{(3)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_3$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(A)\overline{\mathbf{11}}(\mathbf{1}) \overline{\mathbf{7}}(\mathbf{1})E_{(2)}(A)E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_4$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(A^{-1})\overline{\mathbf{11}}(\mathbf{1})E_{(2)}(A^{-\mathbf{1}}) \overline{\mathbf{7}}(\mathbf{1})E_{(3)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_5$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})\overline{\mathbf{11}}(A)E_{(1)}(A^{-1}) \overline{\mathbf{7}}(\mathbf{1})E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$M_6$ $\overline{\mathbf{12}}(\mathbf{1})\overline{\mathbf{4}}(\mathbf{1})\overline{\mathbf{3}}(\mathbf{1})E_{(4)}(A^{-1})\overline{\mathbf{11}}(\mathbf{1}) \overline{\mathbf{7}}(A^{-1})E_{(2)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})$
$ M_7$ $\overline{\mathbf{10}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(A)\overline{\mathbf{\mathbf{1}}}(\mathbf{1}) \overline{\mathbf{10}}(A)E_{(2)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$ M_8$ $\overline{\mathbf{\mathbf{1}0}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(A) \overline{\mathbf{\mathbf{1}0}}(A)E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$ M_9$ $\overline{\mathbf{10}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(A^{-1}) \overline{\mathbf{10}}(A^{-1})E_{(3)}(A)\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{\mathbf{1}}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
$ M_{10}$ $\overline{\mathbf{10}}(\mathbf{1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{9}}(A^{-1})\overline{\mathbf{1}}(\mathbf{1}) \overline{\mathbf{10}}(A^{-1})E_{(3)}(A^{-1})\overline{\mathbf{5}}(\mathbf{1})\overline{\mathbf{1}}(\mathbf{1})\overline{\mathbf{9}}(\mathbf{1}) $
Table 7.  The minimal polynomial is $x^8+x^2+1 = 0$ and $A = \mathrm{companion}(1, 0, 1, 0, 0, 0, 0, 0)$
No. $M_{11}$ $M_{12}$ $M_{13}$ $M_{14}$ $M_{21}$ $M_{22}$ $M_{23}$ $M_{24}$
$1$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$2$ $A$ $A^7$ $A + A^7$ $A + I + A^7$ $A$ $I + A^7$ $A + I + A^7$ $A + A^7$
$3$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$4$ $I$ $A^6$ $I + A^6$ $A + I + A^6 + A^7$ $I$ $A + A^6 + A^7$ $A + I + A^6 + A^7$ $I + A^6$
$5$ $A + A^7$ $A^7$ $A$ $A + I$ $A + A^7$ $I + A^7$ $A + I$ $A$
$6$ $I$ $A^6$ $I + A^6$ $A + I + A^6 + A^7$ $I$ $A + A^6 + A^7$ $A + I + A^6 + A^7$ $I + A^6$
$7$\thanks $I$ $A + I$ $A$ $A$ $A^2$ $A + A^2$ $A + I$ $I$
$8$ $I$ $A + I$ $A$ $A$ $A$ $A + I$ $A + I + A^7$ $A + A^7$
$9$ $I$ $A + I + A^7$ $A + A^7$ $A + A^7$ $A + A^7$ $A + I + A^7$ $A + I$ $A$
$10$ $I$ $A + I + A^7$ $A + A^7$ $A + A^7$ $I + A^6$ $A + I + A^6 + A^7$ $A + I + A^7$ $I$
No. $M_{31}$ $M_{32}$ $M_{33}$ $M_{34}$ $M_{41}$ $M_{42}$ $M_{43}$ $M_{44}$
$1$ $A$ $A$ $I$ $I$ $A$ $A + A^2$ $I + A^2$ $A + I + A^2$
$2$ $I$ $I$ $A$ $A$ $I$ $A + I + A^7$ $A^7$ $I + A^7$
$3$ $I$ $I$ $A + A^7$ $A + A^7$ $I$ $A + I$ $A^7$ $I + A^7$
$4$ $I$ $I$ $A$ $A$ $I$ $A + I + A^7$ $A^7$ $I + A^7$
$5$ $I$ $I$ $A + A^7$ $A + A^7$ $I$ $A + I$ $A^7$ $I + A^7$
$6$ $A + A^7$ $A + A^7$ $I$ $I$ $A + A^7$ $A + I + A^6 + A^7$ $A^6$ $A + A^6 + A^7$
$7$ $A^2$ $A^2$ $I$ $A + I$ $A + I$ $I$ $A$ $A + I$
$8$ $A$ $A$ $A + A^7$ $A + I + A^7$ $A + I$ $I$ $A$ $A + I$
$9$ $A + A^7$ $A + A^7$ $A$ $A + I$ $A + I + A^7$ $I$ $A + A^7$ $A + I + A^7$
$10$ $I + A^6$ $I + A^6$ $I$ $A + I + A^7$ $A + I + A^7$ $I$ $A + A^7$ $A + I + A^7$
No. $M_{11}$ $M_{12}$ $M_{13}$ $M_{14}$ $M_{21}$ $M_{22}$ $M_{23}$ $M_{24}$
$1$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$2$ $A$ $A^7$ $A + A^7$ $A + I + A^7$ $A$ $I + A^7$ $A + I + A^7$ $A + A^7$
$3$ $I$ $I + A^2$ $A^2$ $A + A^2$ $I$ $A + I + A^2$ $A + A^2$ $A^2$
$4$ $I$ $A^6$ $I + A^6$ $A + I + A^6 + A^7$ $I$ $A + A^6 + A^7$ $A + I + A^6 + A^7$ $I + A^6$
$5$ $A + A^7$ $A^7$ $A$ $A + I$ $A + A^7$ $I + A^7$ $A + I$ $A$
$6$ $I$ $A^6$ $I + A^6$ $A + I + A^6 + A^7$ $I$ $A + A^6 + A^7$ $A + I + A^6 + A^7$ $I + A^6$
$7$\thanks $I$ $A + I$ $A$ $A$ $A^2$ $A + A^2$ $A + I$ $I$
$8$ $I$ $A + I$ $A$ $A$ $A$ $A + I$ $A + I + A^7$ $A + A^7$
$9$ $I$ $A + I + A^7$ $A + A^7$ $A + A^7$ $A + A^7$ $A + I + A^7$ $A + I$ $A$
$10$ $I$ $A + I + A^7$ $A + A^7$ $A + A^7$ $I + A^6$ $A + I + A^6 + A^7$ $A + I + A^7$ $I$
No. $M_{31}$ $M_{32}$ $M_{33}$ $M_{34}$ $M_{41}$ $M_{42}$ $M_{43}$ $M_{44}$
$1$ $A$ $A$ $I$ $I$ $A$ $A + A^2$ $I + A^2$ $A + I + A^2$
$2$ $I$ $I$ $A$ $A$ $I$ $A + I + A^7$ $A^7$ $I + A^7$
$3$ $I$ $I$ $A + A^7$ $A + A^7$ $I$ $A + I$ $A^7$ $I + A^7$
$4$ $I$ $I$ $A$ $A$ $I$ $A + I + A^7$ $A^7$ $I + A^7$
$5$ $I$ $I$ $A + A^7$ $A + A^7$ $I$ $A + I$ $A^7$ $I + A^7$
$6$ $A + A^7$ $A + A^7$ $I$ $I$ $A + A^7$ $A + I + A^6 + A^7$ $A^6$ $A + A^6 + A^7$
$7$ $A^2$ $A^2$ $I$ $A + I$ $A + I$ $I$ $A$ $A + I$
$8$ $A$ $A$ $A + A^7$ $A + I + A^7$ $A + I$ $I$ $A$ $A + I$
$9$ $A + A^7$ $A + A^7$ $A$ $A + I$ $A + I + A^7$ $I$ $A + A^7$ $A + I + A^7$
$10$ $I + A^6$ $I + A^6$ $I$ $A + I + A^7$ $A + I + A^7$ $I$ $A + A^7$ $A + I + A^7$
Table 8.  The minimal polynomial is $ x^4+x+1 = 0 $ and $ A = \mathrm{companion}(1, 1, 0, 0) $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I + A^2 + A^3 $ $ A + I + A^3 $ $ A + I $ $ A + A^3 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ I $ $ A^3 $
$ 2 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A^2 + A^3 $ $ A + A^2 + A^3 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ A^3 $ $ A + A^3 $
$ 3 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A + A^2 $ $ A + I + A^2 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ A^2 $ $ I + A^2 $
$ 4 $ $ I $ $ A $ $ A + I $ $ A + I + A^2 $ $ I $ $ A + I $ $ A $ $ A + A^2 $
$ 5 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A + A^2 $ $ A^2 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ A^2 $ $ A + A^2 $
$ 6 $ $ I + A^2 + A^3 $ $ A^2 + A^3 $ $ A + I $ $ A + A^3 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A $ $ A + I $
$ 7 $ $ I $ $ A^2 $ $ I + A^2 $ $ A + I + A^2 $ $ I $ $ I + A^2 $ $ A^2 $ $ A + A^2 $
$ 8 $ $ I + A^2 + A^3 $ $ A + I + A^3 $ $ A + A^2 $ $ A + I + A^2 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ A $ $ A + I $
$ 9 $ $ I $ $ A $ $ A + I $ $ A + A^3 $ $ I $ $ A + I $ $ A $ $ A + I $
$ 10 $ $ I $ $ A $ $ A^3 $ $ A + A^3 $ $ I $ $ A + I $ $ I $ $ A + I $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I $ $ I + A^2 $ $ A + I $ $ A $ $ I $ $ I $ $ I $ $ I $
$ 2 $ $ I $ $ A + I $ $ I + A^2 $ $ A^2 $ $ I $ $ I $ $ I $ $ I $
$ 3 $ $ A $ $ A + A^2 $ $ I + A^2 $ $ A^2 $ $ A $ $ A $ $ I $ $ I $
$ 4 $ $ I + A^3 $ $ A + I + A^3 $ $ A + I + A^2 + A^3 $ $ A + I + A^3 $ $ I + A^3 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ I + A^2 + A^3 $
$ 5 $ $ I $ $ I + A^2 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ I $ $ I $ $ I + A^3 $ $ I + A^3 $
$ 6 $ $ I $ $ A + I + A^3 $ $ A + I $ $ A $ $ I $ $ I + A^3 $ $ I $ $ I $
$ 7 $ $ A $ $ A + A^2 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ A $ $ A $ $ I + A^3 $ $ I + A^3 $
$ 8 $ $ I + A^3 $ $ A + I + A^3 $ $ A + I $ $ A $ $ I + A^3 $ $ I + A^3 $ $ I $ $ I $
$ 9 $ $ I + A^3 $ $ A + I + A^3 $ $ A + I + A^2 + A^3 $ $ A^2 + A^3 $ $ I $ $ I $ $ I + A^3 $ $ I + A^2 + A^3 $
$ 10 $ $ I $ $ I + A^2 $ $ A + I + A^2 + A^3 $ $ A + I + A^3 $ $ I $ $ I $ $ I + A^2 + A^3 $ $ I + A^2 + A^3 $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I + A^2 + A^3 $ $ A + I + A^3 $ $ A + I $ $ A + A^3 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ I $ $ A^3 $
$ 2 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A^2 + A^3 $ $ A + A^2 + A^3 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ A^3 $ $ A + A^3 $
$ 3 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A + A^2 $ $ A + I + A^2 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ A^2 $ $ I + A^2 $
$ 4 $ $ I $ $ A $ $ A + I $ $ A + I + A^2 $ $ I $ $ A + I $ $ A $ $ A + A^2 $
$ 5 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A + A^2 $ $ A^2 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ A^2 $ $ A + A^2 $
$ 6 $ $ I + A^2 + A^3 $ $ A^2 + A^3 $ $ A + I $ $ A + A^3 $ $ I + A^3 $ $ A + I + A^2 + A^3 $ $ A $ $ A + I $
$ 7 $ $ I $ $ A^2 $ $ I + A^2 $ $ A + I + A^2 $ $ I $ $ I + A^2 $ $ A^2 $ $ A + A^2 $
$ 8 $ $ I + A^2 + A^3 $ $ A + I + A^3 $ $ A + A^2 $ $ A + I + A^2 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ A $ $ A + I $
$ 9 $ $ I $ $ A $ $ A + I $ $ A + A^3 $ $ I $ $ A + I $ $ A $ $ A + I $
$ 10 $ $ I $ $ A $ $ A^3 $ $ A + A^3 $ $ I $ $ A + I $ $ I $ $ A + I $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I $ $ I + A^2 $ $ A + I $ $ A $ $ I $ $ I $ $ I $ $ I $
$ 2 $ $ I $ $ A + I $ $ I + A^2 $ $ A^2 $ $ I $ $ I $ $ I $ $ I $
$ 3 $ $ A $ $ A + A^2 $ $ I + A^2 $ $ A^2 $ $ A $ $ A $ $ I $ $ I $
$ 4 $ $ I + A^3 $ $ A + I + A^3 $ $ A + I + A^2 + A^3 $ $ A + I + A^3 $ $ I + A^3 $ $ I + A^3 $ $ I + A^2 + A^3 $ $ I + A^2 + A^3 $
$ 5 $ $ I $ $ I + A^2 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ I $ $ I $ $ I + A^3 $ $ I + A^3 $
$ 6 $ $ I $ $ A + I + A^3 $ $ A + I $ $ A $ $ I $ $ I + A^3 $ $ I $ $ I $
$ 7 $ $ A $ $ A + A^2 $ $ I + A^2 + A^3 $ $ A + I + A^2 + A^3 $ $ A $ $ A $ $ I + A^3 $ $ I + A^3 $
$ 8 $ $ I + A^3 $ $ A + I + A^3 $ $ A + I $ $ A $ $ I + A^3 $ $ I + A^3 $ $ I $ $ I $
$ 9 $ $ I + A^3 $ $ A + I + A^3 $ $ A + I + A^2 + A^3 $ $ A^2 + A^3 $ $ I $ $ I $ $ I + A^3 $ $ I + A^2 + A^3 $
$ 10 $ $ I $ $ I + A^2 $ $ A + I + A^2 + A^3 $ $ A + I + A^3 $ $ I $ $ I $ $ I + A^2 + A^3 $ $ I + A^2 + A^3 $
Table 9.  The minimal polynomial is $ x^8+x^2+1 = 0 $ and $ A = \mathrm{companion}(1, 0, 1, 0, 0, 0, 0, 0) $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I $ $ A^2+ A^6 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ I $ $ A^6 $
$ 2 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^4 + A^6 $ $ A^2+ A^4 + A^6 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ A^6 $ $ A^2+ A^6 $
$ 3 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ A^4 $ $ A^2+ I + A^4 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ A^4 $ $ I + A^4 $
$ 4 $ $ I $ $ A^2 $ $ A^2+ I $ $ A^2+ I + A^4 $ $ I $ $ A^2+ I $ $ A^2 $ $ A^2+ A^4 $
$ 5 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ A^4 $ $ A^4 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ A^4 $ $ A^2+ A^4 $
$ 6 $ $ I + A^4 + A^6 $ $ A^4 + A^6 $ $ A^2+ I $ $ A^2+ A^6 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2 $ $ A^2+ I $
$ 7 $ $ I $ $ A^4 $ $ I + A^4 $ $ A^2+ I + A^4 $ $ I $ $ I + A^4 $ $ A^4 $ $ A^2+ A^4 $
$ 8 $ $ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ A^2+ A^4 $ $ A^2+ I + A^4 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2 $ $ A^2+ I $
$ 9 $ $ I $ $ A^2 $ $ A^2+ I $ $ A^2+ A^6 $ $ I $ $ A^2+ I $ $ A^2 $ $ A^2+ I $
$ 10 $ $ I $ $ A^2 $ $ A^6 $ $ A^2+ A^6 $ $ I $ $ A^2+ I $ $ I $ $ A^2+ I $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I $ $ I + A^4 $ $ A^2+ I $ $ A^2 $ $ I $ $ I $ $ I $ $ I $
$ 2 $ $ I $ $ A^2+ I $ $ I + A^4 $ $ A^4 $ $ I $ $ I $ $ I $ $ I $
$ 3 $ $ A^2 $ $ A^2+ A^4 $ $ I + A^4 $ $ A^4 $ $ A^2 $ $ A^2 $ $ I $ $ I $
$ 4 $ $ I + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ I + A^6 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ I + A^4 + A^6 $
$ 5 $ $ I $ $ I + A^4 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ I $ $ I $ $ I + A^6 $ $ I + A^6 $
$ 6 $ $ I $ $ A^2+ I + A^6 $ $ A^2+ I $ $ A^2 $ $ I $ $ I + A^6 $ $ I $ $ I $
$ 7 $ $ A^2 $ $ A^2+ A^4 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2 $ $ A^2 $ $ I + A^6 $ $ I + A^6 $
$ 8 $ $ I + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I $ $ A^2 $ $ I + A^6 $ $ I + A^6 $ $ I $ $ I $
$ 9 $ $ I + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^4 + A^6 $ $ I $ $ I $ $ I + A^6 $ $ I + A^4 + A^6 $
$ 10 $ $ I $ $ I + A^4 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ I $ $ I $ $ I + A^4 + A^6 $ $ I + A^4 + A^6 $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I $ $ A^2+ A^6 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ I $ $ A^6 $
$ 2 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^4 + A^6 $ $ A^2+ A^4 + A^6 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ A^6 $ $ A^2+ A^6 $
$ 3 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ A^4 $ $ A^2+ I + A^4 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ A^4 $ $ I + A^4 $
$ 4 $ $ I $ $ A^2 $ $ A^2+ I $ $ A^2+ I + A^4 $ $ I $ $ A^2+ I $ $ A^2 $ $ A^2+ A^4 $
$ 5 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ A^4 $ $ A^4 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ A^4 $ $ A^2+ A^4 $
$ 6 $ $ I + A^4 + A^6 $ $ A^4 + A^6 $ $ A^2+ I $ $ A^2+ A^6 $ $ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2 $ $ A^2+ I $
$ 7 $ $ I $ $ A^4 $ $ I + A^4 $ $ A^2+ I + A^4 $ $ I $ $ I + A^4 $ $ A^4 $ $ A^2+ A^4 $
$ 8 $ $ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ A^2+ A^4 $ $ A^2+ I + A^4 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2 $ $ A^2+ I $
$ 9 $ $ I $ $ A^2 $ $ A^2+ I $ $ A^2+ A^6 $ $ I $ $ A^2+ I $ $ A^2 $ $ A^2+ I $
$ 10 $ $ I $ $ A^2 $ $ A^6 $ $ A^2+ A^6 $ $ I $ $ A^2+ I $ $ I $ $ A^2+ I $
No. $ M_{11} $ $ M_{12} $ $ M_{13} $ $ M_{14} $ $ M_{21} $ $ M_{22} $ $ M_{23} $ $ M_{24} $
$ 1 $ $ I $ $ I + A^4 $ $ A^2+ I $ $ A^2 $ $ I $ $ I $ $ I $ $ I $
$ 2 $ $ I $ $ A^2+ I $ $ I + A^4 $ $ A^4 $ $ I $ $ I $ $ I $ $ I $
$ 3 $ $ A^2 $ $ A^2+ A^4 $ $ I + A^4 $ $ A^4 $ $ A^2 $ $ A^2 $ $ I $ $ I $
$ 4 $ $ I + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ I + A^6 $ $ I + A^6 $ $ I + A^4 + A^6 $ $ I + A^4 + A^6 $
$ 5 $ $ I $ $ I + A^4 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ I $ $ I $ $ I + A^6 $ $ I + A^6 $
$ 6 $ $ I $ $ A^2+ I + A^6 $ $ A^2+ I $ $ A^2 $ $ I $ $ I + A^6 $ $ I $ $ I $
$ 7 $ $ A^2 $ $ A^2+ A^4 $ $ I + A^4 + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^2 $ $ A^2 $ $ I + A^6 $ $ I + A^6 $
$ 8 $ $ I + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I $ $ A^2 $ $ I + A^6 $ $ I + A^6 $ $ I $ $ I $
$ 9 $ $ I + A^6 $ $ A^2+ I + A^6 $ $ A^2+ I + A^4 + A^6 $ $ A^4 + A^6 $ $ I $ $ I $ $ I + A^6 $ $ I + A^4 + A^6 $
$ 10 $ $ I $ $ I + A^4 $ $ A^2+ I + A^4 + A^6 $ $ A^2+ I + A^6 $ $ I $ $ I $ $ I + A^4 + A^6 $ $ I + A^4 + A^6 $
[1]

Mohsen Mousavi, Ali Zaghian, Morteza Esmaeili. Involutory-Multiple-Lightweight MDS Matrices based on Cauchy-type Matrices. Advances in Mathematics of Communications, 2021, 15 (4) : 589-610. doi: 10.3934/amc.2020084

[2]

Yaguang Huangfu, Guanqing Liang, Jiannong Cao. MatrixMap: Programming abstraction and implementation of matrix computation for big data analytics. Big Data & Information Analytics, 2016, 1 (4) : 349-376. doi: 10.3934/bdia.2016015

[3]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[4]

Iain Duff, Jonathan Hogg, Florent Lopez. Experiments with sparse Cholesky using a sequential task-flow implementation. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 237-260. doi: 10.3934/naco.2018014

[5]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[6]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

[7]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[8]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[9]

Jian Zhao, Fang Deng, Jian Jia, Chunmeng Wu, Haibo Li, Yuan Shi, Shunli Zhang. A new face feature point matrix based on geometric features and illumination models for facial attraction analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1065-1072. doi: 10.3934/dcdss.2019073

[10]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[11]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435

[12]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[13]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[14]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[15]

Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial & Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036

[16]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[17]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[18]

Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103

[19]

Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052

[20]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

2020 Impact Factor: 0.935

Article outline

Figures and Tables

[Back to Top]