\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New quantum codes from skew constacyclic codes

  • * Corresponding author: Om Prakash

    * Corresponding author: Om Prakash 

The research is supported by the Council of Scientific & Industrial Research (CSIR), Govt. of India.

Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • For an odd prime $ p $ and positive integers $ m $ and $ \ell $, let $ \mathbb{F}_{p^m} $ be the finite field with $ p^{m} $ elements and $ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $. Thus $ R_{\ell,m} $ is a finite commutative non-chain ring of order $ p^{2^{\ell} m} $ with characteristic $ p $. In this paper, we aim to construct quantum codes from skew constacyclic codes over $ R_{\ell,m} $. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.

    Mathematics Subject Classification: 94B15, 94B05, 94B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Quantum MDS codes $ [[n,k,d]]_{p^m} $ from skew $ (\sigma,\gamma) $-constacyclic codes over $ R_{1,m} = \mathbb{F}_{p^m}[v_1]/\langle v_1^2-1\rangle $

    $ p^m $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ g_0(x) $ $ g_1(x) $ $ \Phi(C) $ $ [[n,k,d]]_{p^m} $
    $ 5^2 $ $ 4 $ $ v_1 $ $ (1,-1) $ $ 21 $ $ t1 $ $ [8,6,3] $ $ [[8,4,3]]_{25} $
    $ 5^2 $ $ 4 $ $ -1 $ $ (-1,-1) $ $ (3t+4)(2t+2)1 $ $ t1 $ $ [8,5,4] $ $ [[8,2,4]]_{25} $
    $ 5^2 $ $ 6 $ $ v_1 $ $ (1,-1) $ $ (3t+3)(2t+3)1 $ $ 31 $ $ [12,9,4] $ $ [[12,6,4]]_{25} $
    $ 7^2 $ $ 6 $ $ v_1 $ $ (1,-1) $ $ (3t+5)1 $ $ (5t+2)1 $ $ [12,10,3] $ $ [[12,8,3]]_{49} $
    $ 11^2 $ $ 8 $ $ v_1 $ $ (1,-1) $ $ (4t+3)1 $ $ (10t+1)(6t+9)1 $ $ [16,13,4] $ $ [[16,10,4]]_{121} $
    $ 11^2 $ $ 12 $ $ v_1 $ $ (1,-1) $ $ (4t+3)1 $ $ (10t+7)(3t+4)1 $ $ [24,21,4] $ $ [[24,18,4]]_{121} $
    $ 11^2 $ $ 6 $ $ v_1 $ $ (1,-1) $ $ (4t+3)1 $ $ (2t+4)(5t+2)1 $ $ [12,9,4] $ $ [[12,6,4]]_{121} $
    $ 13^2 $ $ 4 $ $ v_1 $ $ (1,-1) $ $ 81 $ $ (12t+11)1 $ $ [8,6,3] $ $ [[8,4,3]]_{169} $
    $ 13^2 $ $ 12 $ $ v_1 $ $ (1,-1) $ $ (8t+8)1 $ $ (11t+3)1 $ $ [24,22,3] $ $ [[24,20,3]]_{169} $
    $ 13^2 $ $ 6 $ $ v_1 $ $ (1,-1) $ $ (5t+3)1 $ $ (3t+7)1 $ $ [12,10,3] $ $ [[12,8,3]]_{169} $
    $ 17^2 $ $ 8 $ $ v_1 $ $ (1,-1) $ $ (11t+16)1 $ $ (15t+13)1 $ $ [16,14,3] $ $ [[16,12,3]]_{289} $
    $ 17^2 $ $ 8 $ $ v_1 $ $ (1,-1) $ $ (11t+16)(7t+8)1 $ $ (15t+13)1 $ $ [16,13,4] $ $ [[16,10,4]]_{289} $
     | Show Table
    DownLoad: CSV

    Table 2.  New quantum codes $ [[n,k,d]]_{p^m} $ from skew $ (\sigma,\gamma) $-constacyclic codes over $ R_{1,m} = \mathbb{F}_{p^m}[v_1]/\langle v_1^2-1\rangle $

    $ {p^m} $ $ n $ $ \gamma $ $ (\delta_0,\delta_1) $ $ g_0(x) $ $ g_1(x) $ $ \Phi(C) $ $ [[n,k,d]]_{p^m} $ $ [[n',k',d']]_{p^m} $
    $ 3^2 $ $ 12 $ $ v_1 $ $ (1,-1) $ $ (t+1)(t+2)(t)1 $ $ 2(t+1)1 $ $ [24,19,4] $ $ [[24,14,4]]_9 $ $ [[24,10,4]]_9 $ [24]
    $ 3^2 $ $ 8 $ $ -v_1 $ $ (-1,1) $ $ (t+1)(2t+1)(t+2)(t+2)1 $ $ (2t+2)(t+1)11 $ $ [16,9,6] $ $ [[16,2,6]]_9 $ $ [[16,2,5]]_9 $ [24]
    $ 3^2 $ $ 24 $ $ 1 $ $ (1,1) $ $ (t+1)(2t)1 $ $ (2t+1)(2t)(t+1)1 $ $ [48,43,3] $ $ [[48,38,3]]_9 $ $ [[50,30,3]]_9 $ [13]
    $ 5^2 $ $ 20 $ $ v_1 $ $ (1,-1) $ $ (2t+1)(3t+1)1 $ $ (4t+3)1 $ $ [40,37,3] $ $ [[40,34,3]]_{25} $ $ [[40,24,3]]_{25} $ [6]
    $ 5^2 $ $ 40 $ $ 1 $ $ (1,1) $ $ (2t+3)1 $ $ (4t+1)2(3t+2)(t+4)1 $ $ [80,75,3] $ $ [[80,70,3]]_{25} $ $ [[80,56,3]]_{25} $ [6]
    $ 5^2 $ $ 40 $ $ 1 $ $ (1,1) $ $ (t+3)(2t+2)(3t+3)(2t+3)1 $ $ (4t+1)2(3t+2)(t+4)1 $ $ [80,72,4] $ $ [[80,64,4]]_{25} $ $ [[80,48,4]]_{25} $ [6]
    $ 7^2 $ $ 28 $ $ v_1 $ $ (1,-1) $ $ (6t+4)(t+4)(3t+6)(2t+3)(4t+5)1 $ $ (3t+4)1 $ $ [56,50,4] $ $ [[56,44,4]]_{49} $ $ [[56,32,4]]_{49} $ [6]
    $ 7^2 $ $ 28 $ $ -v_1 $ $ (-1,1) $ $ (5t+3)(4t+2)1 $ $ (6t+4)(t+1)1 $ $ [56,52,3] $ $ [[56,48,3]]_{49} $ $ [[56,40,3]]_{49} $ [6]
     | Show Table
    DownLoad: CSV

    Table 3.  New quantum codes from skew $ (\sigma,\gamma) $-constacyclic codes over $ R_{\ell,m} $

    $ \ell $ $ n $ $ \gamma $ $ (\delta_0,\delta_1,\dots, \delta_{2^{\ell}-1}) $ $ g_0(x),g_1(x),\dots,g_{2^{\ell}-1}(x) $ $ \Phi(C) $ $ [[n,k,d]]_{p^m} $
    $ 1 $ $ 16 $ $ 1 $ $ (1,1) $ $ (t+1)1,(2t+1)111 $ $ [32,27,4] $ $ [[32,22,4]]_{9} $
    $ 2 $ $ 16 $ $ 1 $ $ (1,1,1,1) $ $ tt1,(t+1)1,(t+1)1,(t+2)(2t+1)(2t+2)1 $ $ [64,57,4] $ $ [[64,50,4]]_{9} $
    $ 2 $ $ 16 $ $ 1 $ $ (1,1,1,1) $ $ (t+1)1,(t+1)1,(t+1)1,(2t)(t+2)11 $ $ [64,58,3] $ $ [[64,52,3]]_{9} $
    $ 2 $ $ 24 $ $ -1+v_1-v_2-v_1v_2 $ $ (1,1,-1,1) $ $ (2t)1,(t+1)t1,tt1,t1 $ $ [96,90,3] $ $ [[96,84,3]]_{9} $
    $ 2 $ $ 24 $ $ -1+v_1-v_2-v_1v_2 $ $ (1,1,-1,1) $ $ (2t)1,1(2t+2)1,(t+2)11,(2t+2)(2t+2)11 $ $ [96,88,4] $ $ [[96,80,4]]_{9} $
    $ 3 $ $ 16 $ $ 1 $ $ (1,1,1,1,1,1,1,1) $ $ 1,1,1,(2t+2)1,1,tt1,(2t+1)(2t+2)(2t+1)1,(t+2)21 $ $ [128,120,4] $ $ [[128,112,4]]_{9} $
    $ 1 $ $ 16 $ $ 1 $ $ (1,1) $ $ t1,1(3t)1 $ $ [32,28,3] $ $ [[32,24,3]]_{25} $
    $ 1 $ $ 18 $ $ -1 $ $ (-1,-1) $ $ 2(2t+1)(4t+2)1,31 $ $ [36,32,3] $ $ [[36,28,3]]_{25} $
    $ 1 $ $ 20 $ $ 1 $ $ (1,1) $ $ (t+3)1,(2t+2)(t+3)(4t+4)t1 $ $ [40,35,4] $ $ [[40,30,4]]_{25} $
    $ 1 $ $ 24 $ $ 1 $ $ (1,1) $ $ (2t+3)(t+1)1,(4t+3)(t+1)(4t+1)1 $ $ [48,43,4] $ $ [[48,38,4]]_{25} $
    $ 2 $ $ 16 $ $ 1 $ $ (1,1,1,1) $ $ t1,t1,t1,(4t+1)(2t)(3t+4)1 $ $ [64,58,4] $ $ [[64,52,4]]_{25} $
    $ 2 $ $ 30 $ $ 1 $ $ (1,1,1,1) $ $ (2t+2)1,(3t+4)1,(2t+2)(4t+3)1,(2t+2)(3t+3)(t+1)1 $ $ [120,113,3] $ $ [[120,106,3]]_{25} $
    $ 2 $ $ 24 $ $ 1 $ $ (1,1,1,1) $ $ (4t)1,(3t+1)t1,(t+3)21,(2t)1 $ $ [96,90,4] $ $ [[96,84,4]]_{25} $
    $ 2 $ $ 24 $ $ 1 $ $ (1,1,1,1) $ $ (2t+4)1,2(2t+2)1,21,(3t+1)1 $ $ [96,91,3] $ $ [[96,86,3]]_{25} $
    $ 3 $ $ 16 $ $ 1 $ $ (1,1,1,1,1,1,1,1) $ $ 1,1,1,(3t+1)1,(2t+3)(t+1)1,(2t+2)(2t+3)(2t+1)1,(t+4)1 $ $ [128,121,4] $ $ [[128,114,4]]_{25} $
    $ 2 $ $ 24 $ $ 4-3v_1+3v_2-3v_1v_2 $ $ (1,-1,1,1) $ $ t1,(2t+6)(3t)1,(4t+1)(3t+6)1,(3t+6)1 $ $ [96,90,4] $ $ [[96,84,4]]_{49} $
    $ 2 $ $ 24 $ $ 1 $ $ (1,1,1,1) $ $ t1,(4t+2)1,(6t+3)(2t+5)1,(2t+5)1 $ $ [96,91,3] $ $ [[96,86,3]]_{49} $
    $ 3 $ $ 16 $ $ 1 $ $ (1,1,1,1,1,1,1,1) $ $ 1,1,1,(6t+4)1,1,(2t+4)(5t+4)1,(3t+4)(6t)(4t+4)1,(6t+4)(4t+2)1 $ $ [128,120,4] $ $ [[128,112,4]]_{49} $
    $ 3 $ $ 18 $ $ 1 $ $ (1,1,1,1,1,1,1,1) $ $ 1,1,1,(2t+6)1,1,(2t+6)(t+1)1,(t+4)(t+2)(6t+6)1,(3t+5)(5t+5)11 $ $ [144,135,3] $ $ [[144,126,3]]_{49} $
    $ 3 $ $ 16 $ $ 1 $ $ (1,1,1,1,1,1,1,1) $ $ 1,1,1,(7t+8)1,1,(t+4)(10t+8)1,(10t+3)(3t+1)11,(t+8)(2t+1)1 $ $ [128,120,4] $ $ [[128,112,4]]_{121} $
     | Show Table
    DownLoad: CSV
  • [1] T. Abualrub and I. Siap, Constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$, J. Franklin Inst., 346 (2009), 520-529.  doi: 10.1016/j.jfranklin.2009.02.001.
    [2] T. AbualrubN. Aydin and P. Seneviratne, On $\theta$-cyclic codes over $\mathbb{F}_{2}+v\mathbb{F}_{2}$, Australasian J. Combinatorics, 54 (2012), 115-126. 
    [3] A. AlahmadiH. IslamO. PrakashP. SoléA. AlkenaniN. Muthana and R. Hijazi, New quantum codes from constacyclic codes over a non-chain ring, Quantum Inf. Process., 20 (2021).  doi: 10.1007/s11128-020-02977-y.
    [4] M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $\mathbb{F}_{q} +u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Quantum Inf. Process., 15 (2016), 4089-4098.  doi: 10.1007/s11128-016-1379-8.
    [5] M. Ashraf and G. Mohammad, Quantum codes over $\mathbb{F}_{p}$ from cyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle$, Cryptogr. Commun., 11 (2019), 325-335.  doi: 10.1007/s12095-018-0299-0.
    [6] T. BagH. Q. DinhA. K. UpadhyayR. K. Bandi and W. Yamaka, Quantum codes from skew constacyclic codes over the ring $\mathbb{F}_{q}[u,v]/ \langle u^2 -1, v^2 -1, uv -vu\rangle$, Discrete Math., 343 (2020), 111737.  doi: 10.1016/j.disc.2019.111737.
    [7] M. Bhaintwal, Skew quasi cyclic codes over Galois rings, Des. Codes Cryptogr., 62 (2012), 85-101.  doi: 10.1007/s10623-011-9494-0.
    [8] W. Bosma and J. Cannon, Handbook of Magma Functions, Univ. of Sydney, (1995).
    [9] D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Eng. Comm., 18 (2007), 379-389.  doi: 10.1007/s00200-007-0043-z.
    [10] D. BoucherF. Ulmer and P. Solé, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.  doi: 10.3934/amc.2008.2.273.
    [11] D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symbolic Comput., 44 (2009), 1644-1656.  doi: 10.1016/j.jsc.2007.11.008.
    [12] A. CalderbankE. RainsP. Shor and N. J. A. Sloane, Nested quantum error correction codes, IEEE Trans. Inf. Theory, 44 (1998), 1369-1387. 
    [13] Y. Edel, Some good quantum twisted codes, https://www.mathi.uni-heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html.
    [14] J. Gao, Some results on linear codes over $\mathbb{F}_{p} +u\mathbb{F}_{p}+u^{2}\mathbb{F}_{p}$, J. Appl. Math. Comput., 47 (2015), 473-485.  doi: 10.1007/s12190-014-0786-1.
    [15] J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}+v^{3}\mathbb{F}_{q}$, Int. J. Quantum Inf., 13 (2015), 1550063.  doi: 10.1142/S021974991550063X.
    [16] J. Gao and Y. Wang, $u$-Constacyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), 9pp. doi: 10.1007/s11128-017-1775-8.
    [17] M. GrasslT. Beth and M. Rötteler, On optimal quantum codes, Int. J. Quantum Inf., 2 (2004), 55-64. 
    [18] M. Grassl and M. Rötteler, Quantum MDS codes over small fields, IEEE International Symposium on Information Theory (ISIT), (2015), 1104–1108. doi: 10.1109/ISIT.2015.7282626.
    [19] F. GursoyI. Siap and B. Yildiz, Construction of skew cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}$, Adv. Math. Commun., 8 (2014), 313-322.  doi: 10.3934/amc.2014.8.313.
    [20] A. R. Hammons Jr.P. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_{4}$-linearity of Kerdock, Preparata, Coethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.
    [21] H. Islam and O. Prakash, Skew cyclic and skew $(\alpha_1+u\alpha_2+v\alpha_3+uv\alpha_4)$-constacyclic codes over $\mathbb{F}_q+u\mathbb{F}_q+v\mathbb{F}_q+uv\mathbb{F}_q$, Int. J. Inf. Coding Theory, 5 (2018), 101-116.  doi: 10.1504/IJICOT.2018.095008.
    [22] H. Islam and O. Prakash, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1, uv-vu,vw-wv,wu-uw\rangle$, J. Appl. Math. Comput., 60 (2019), 625-635.  doi: 10.1007/s12190-018-01230-1.
    [23] H. IslamO. Prakash and D. K. Bhunia, Quantum codes obtained from constacyclic codes, Internat. J. Theoret. Phys., 58 (2019), 3945-3951.  doi: 10.1007/s10773-019-04260-y.
    [24] H. Islam, O. Prakash and R. K. Verma, New quantum codes from constacyclic codes over the ring $ R_{k, m}$, Adv. Math. Commun., (2020) doi: 10.3934/amc.2020097.
    [25] H. IslamR. K. Verma and O. Prakash, A family of constacyclic codes over $\mathbb{F}_{p^m}[u,v]/\langle u^{2}-1,v^{2}-1, uv-vu\rangle$, Int. J. Inf. Coding Theory, 5 (2018), 198-210.  doi: 10.1504/IJICOT.2020.110677.
    [26] H. IslamO. Prakash and R. K. Verma, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[v,w]/\langle v^{2}-1,w^{2}-1, vw-wv\rangle$, Springer Proceedings in Mathematics and Statistics, 307 (2020), 67-74.  doi: 10.1007/978-981-15-1157-8\_6.
    [27] H. Islam and O. Prakash, New quantum codes from constacyclic and additive constacyclic codes, Quantum Inf. Process., 19 (2020).  doi: 10.1007/s11128-020-02825-z.
    [28] S. JitmanS. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain ring, Adv. Math. Commun., 6 (2012), 39-63.  doi: 10.3934/amc.2012.6.39.
    [29] X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $\mathbb{F}_{4} +u \mathbb{F}_{4}$, Int. J. Quantum Inf., 9 (2011), 689-700.  doi: 10.1142/S0219749911007757.
    [30] X. S. KaiS. X. Zhu and L. Wang, A family of constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+v\mathbb{F}_{2}+uv\mathbb{F}_{2}$, J. Syst. Sci. Complex., 25 (2012), 1032-1040.  doi: 10.1007/s11424-012-1001-9.
    [31] S. Karadeniz and B. Yildiz, $(1+v)$- Constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+v\mathbb{F}_{2}+uv\mathbb{F}_{2}$, J. Franklin Inst., 348 (2011), 2625-2632.  doi: 10.1016/j.jfranklin.2011.08.005.
    [32] A. KetkarA. KlappeneckerS. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite Fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.
    [33] F. MaJ. Gao and F. W. Fu, New non-binary quantum codes from constacyclic codes over $\mathbb{F}_q[u, v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle$, Adv. Math. Commun., 13 (2019), 421-434.  doi: 10.3934/amc.2019027.
    [34] O. Ore, Theory of non-commutative polynomials, Annals of Mathematics, 34 (1933), 480-508.  doi: 10.2307/1968173.
    [35] J-F. QianL-N. Zhang and S-X. Zhu, $(1+u)$ constacyclic and cyclic codes over $\mathbb{F}_{2} +u \mathbb{F}_{2}$, Applied Mathematics Letters, 19 (2006), 820-823.  doi: 10.1016/j.aml.2005.10.011.
    [36] J. QianW. Ma and W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf., 7 (2009), 1277-1283. 
    [37] E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inf. Theory, 45 (1999), 1827-1832.  doi: 10.1109/18.782103.
    [38] E. M. Rains, Quantum codes of minimum distance two, IEEE Trans. Inf. Theory, 45 (1999), 266-271.  doi: 10.1109/18.746807.
    [39] P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev.A, 52 (1995), 2493-2496.  doi: 10.1103/PhysRevA.52.R2493.
    [40] I. SiapT. AbualrubN. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory, 2 (2011), 10-20.  doi: 10.1504/IJICOT.2011.044674.
    [41] T. Yao M. Shi and P. Solé, Skew cyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, J. Algebra Comb. Discrete Appl., 2 (2015), 163-168. 
    [42] H. YuS. Zhu and X. Kai, $(1-uv)$-constacyclic codes over $\mathbb{F}_{p} +u\mathbb{F}_{p}+v\mathbb{F}_{p}+uv\mathbb{F}_{p}$, J. Syst. Sci. Complex., 27 (2014), 811-816.  doi: 10.1007/s11424-014-3241-3.
    [43] X. Zheng and B. Kong, Cyclic codes and $\lambda_{1}+\lambda_{2}u+\lambda_{3} v+\lambda_{4}uv$-constacyclic codes over $\mathbb{F}_{p} +u\mathbb{F}_{p}+v\mathbb{F}_{p}+uv\mathbb{F}_{p}$, Appl. Math. Comput., 306 (2017), 86-91.  doi: 10.1016/j.amc.2017.02.017.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(3684) PDF downloads(773) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return