[1]
|
T. Abualrub and I. Siap, Constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$, J. Franklin Inst., 346 (2009), 520-529.
doi: 10.1016/j.jfranklin.2009.02.001.
|
[2]
|
T. Abualrub, N. Aydin and P. Seneviratne, On $\theta$-cyclic codes over $\mathbb{F}_{2}+v\mathbb{F}_{2}$, Australasian J. Combinatorics, 54 (2012), 115-126.
|
[3]
|
A. Alahmadi, H. Islam, O. Prakash, P. Solé, A. Alkenani, N. Muthana and R. Hijazi, New quantum codes from constacyclic codes over a non-chain ring, Quantum Inf. Process., 20 (2021).
doi: 10.1007/s11128-020-02977-y.
|
[4]
|
M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $\mathbb{F}_{q} +u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Quantum Inf. Process., 15 (2016), 4089-4098.
doi: 10.1007/s11128-016-1379-8.
|
[5]
|
M. Ashraf and G. Mohammad, Quantum codes over $\mathbb{F}_{p}$ from cyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle$, Cryptogr. Commun., 11 (2019), 325-335.
doi: 10.1007/s12095-018-0299-0.
|
[6]
|
T. Bag, H. Q. Dinh, A. K. Upadhyay, R. K. Bandi and W. Yamaka, Quantum codes from skew constacyclic codes over the ring $\mathbb{F}_{q}[u,v]/ \langle u^2 -1, v^2 -1, uv -vu\rangle$, Discrete Math., 343 (2020), 111737.
doi: 10.1016/j.disc.2019.111737.
|
[7]
|
M. Bhaintwal, Skew quasi cyclic codes over Galois rings, Des. Codes Cryptogr., 62 (2012), 85-101.
doi: 10.1007/s10623-011-9494-0.
|
[8]
|
W. Bosma and J. Cannon, Handbook of Magma Functions, Univ. of Sydney, (1995).
|
[9]
|
D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Eng. Comm., 18 (2007), 379-389.
doi: 10.1007/s00200-007-0043-z.
|
[10]
|
D. Boucher, F. Ulmer and P. Solé, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273.
|
[11]
|
D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symbolic Comput., 44 (2009), 1644-1656.
doi: 10.1016/j.jsc.2007.11.008.
|
[12]
|
A. Calderbank, E. Rains, P. Shor and N. J. A. Sloane, Nested quantum error correction codes, IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.
|
[13]
|
Y. Edel, Some good quantum twisted codes, https://www.mathi.uni-heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html.
|
[14]
|
J. Gao, Some results on linear codes over $\mathbb{F}_{p} +u\mathbb{F}_{p}+u^{2}\mathbb{F}_{p}$, J. Appl. Math. Comput., 47 (2015), 473-485.
doi: 10.1007/s12190-014-0786-1.
|
[15]
|
J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}+v^{3}\mathbb{F}_{q}$, Int. J. Quantum Inf., 13 (2015), 1550063.
doi: 10.1142/S021974991550063X.
|
[16]
|
J. Gao and Y. Wang, $u$-Constacyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), 9pp.
doi: 10.1007/s11128-017-1775-8.
|
[17]
|
M. Grassl, T. Beth and M. Rötteler, On optimal quantum codes, Int. J. Quantum Inf., 2 (2004), 55-64.
|
[18]
|
M. Grassl and M. Rötteler, Quantum MDS codes over small fields, IEEE International Symposium on Information Theory (ISIT), (2015), 1104–1108.
doi: 10.1109/ISIT.2015.7282626.
|
[19]
|
F. Gursoy, I. Siap and B. Yildiz, Construction of skew cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}$, Adv. Math. Commun., 8 (2014), 313-322.
doi: 10.3934/amc.2014.8.313.
|
[20]
|
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb{Z}_{4}$-linearity of Kerdock, Preparata, Coethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154.
|
[21]
|
H. Islam and O. Prakash, Skew cyclic and skew $(\alpha_1+u\alpha_2+v\alpha_3+uv\alpha_4)$-constacyclic codes over $\mathbb{F}_q+u\mathbb{F}_q+v\mathbb{F}_q+uv\mathbb{F}_q$, Int. J. Inf. Coding Theory, 5 (2018), 101-116.
doi: 10.1504/IJICOT.2018.095008.
|
[22]
|
H. Islam and O. Prakash, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1, uv-vu,vw-wv,wu-uw\rangle$, J. Appl. Math. Comput., 60 (2019), 625-635.
doi: 10.1007/s12190-018-01230-1.
|
[23]
|
H. Islam, O. Prakash and D. K. Bhunia, Quantum codes obtained from constacyclic codes, Internat. J. Theoret. Phys., 58 (2019), 3945-3951.
doi: 10.1007/s10773-019-04260-y.
|
[24]
|
H. Islam, O. Prakash and R. K. Verma, New quantum codes from constacyclic codes over the ring $ R_{k, m}$, Adv. Math. Commun., (2020)
doi: 10.3934/amc.2020097.
|
[25]
|
H. Islam, R. K. Verma and O. Prakash, A family of constacyclic codes over $\mathbb{F}_{p^m}[u,v]/\langle u^{2}-1,v^{2}-1, uv-vu\rangle$, Int. J. Inf. Coding Theory, 5 (2018), 198-210.
doi: 10.1504/IJICOT.2020.110677.
|
[26]
|
H. Islam, O. Prakash and R. K. Verma, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[v,w]/\langle v^{2}-1,w^{2}-1, vw-wv\rangle$, Springer Proceedings in Mathematics and Statistics, 307 (2020), 67-74.
doi: 10.1007/978-981-15-1157-8\_6.
|
[27]
|
H. Islam and O. Prakash, New quantum codes from constacyclic and additive constacyclic codes, Quantum Inf. Process., 19 (2020).
doi: 10.1007/s11128-020-02825-z.
|
[28]
|
S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain ring, Adv. Math. Commun., 6 (2012), 39-63.
doi: 10.3934/amc.2012.6.39.
|
[29]
|
X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $\mathbb{F}_{4} +u \mathbb{F}_{4}$, Int. J. Quantum Inf., 9 (2011), 689-700.
doi: 10.1142/S0219749911007757.
|
[30]
|
X. S. Kai, S. X. Zhu and L. Wang, A family of constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+v\mathbb{F}_{2}+uv\mathbb{F}_{2}$, J. Syst. Sci. Complex., 25 (2012), 1032-1040.
doi: 10.1007/s11424-012-1001-9.
|
[31]
|
S. Karadeniz and B. Yildiz, $(1+v)$- Constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+v\mathbb{F}_{2}+uv\mathbb{F}_{2}$, J. Franklin Inst., 348 (2011), 2625-2632.
doi: 10.1016/j.jfranklin.2011.08.005.
|
[32]
|
A. Ketkar, A. Klappenecker, S. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite Fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.
doi: 10.1109/TIT.2006.883612.
|
[33]
|
F. Ma, J. Gao and F. W. Fu, New non-binary quantum codes from constacyclic codes over $\mathbb{F}_q[u, v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle$, Adv. Math. Commun., 13 (2019), 421-434.
doi: 10.3934/amc.2019027.
|
[34]
|
O. Ore, Theory of non-commutative polynomials, Annals of Mathematics, 34 (1933), 480-508.
doi: 10.2307/1968173.
|
[35]
|
J-F. Qian, L-N. Zhang and S-X. Zhu, $(1+u)$ constacyclic and cyclic codes over $\mathbb{F}_{2} +u \mathbb{F}_{2}$, Applied Mathematics Letters, 19 (2006), 820-823.
doi: 10.1016/j.aml.2005.10.011.
|
[36]
|
J. Qian, W. Ma and W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf., 7 (2009), 1277-1283.
|
[37]
|
E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inf. Theory, 45 (1999), 1827-1832.
doi: 10.1109/18.782103.
|
[38]
|
E. M. Rains, Quantum codes of minimum distance two, IEEE Trans. Inf. Theory, 45 (1999), 266-271.
doi: 10.1109/18.746807.
|
[39]
|
P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev.A, 52 (1995), 2493-2496.
doi: 10.1103/PhysRevA.52.R2493.
|
[40]
|
I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory, 2 (2011), 10-20.
doi: 10.1504/IJICOT.2011.044674.
|
[41]
|
T. Yao M. Shi and P. Solé, Skew cyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, J. Algebra Comb. Discrete Appl., 2 (2015), 163-168.
|
[42]
|
H. Yu, S. Zhu and X. Kai, $(1-uv)$-constacyclic codes over $\mathbb{F}_{p} +u\mathbb{F}_{p}+v\mathbb{F}_{p}+uv\mathbb{F}_{p}$, J. Syst. Sci. Complex., 27 (2014), 811-816.
doi: 10.1007/s11424-014-3241-3.
|
[43]
|
X. Zheng and B. Kong, Cyclic codes and $\lambda_{1}+\lambda_{2}u+\lambda_{3} v+\lambda_{4}uv$-constacyclic codes over $\mathbb{F}_{p} +u\mathbb{F}_{p}+v\mathbb{F}_{p}+uv\mathbb{F}_{p}$, Appl. Math. Comput., 306 (2017), 86-91.
doi: 10.1016/j.amc.2017.02.017.
|