We study orbit codes in the field extension $ \mathbb{F}_{q^n} $. First we show that the automorphism group of a cyclic orbit code is contained in the normalizer of the Singer subgroup if the orbit is generated by a subspace that is not contained in a proper subfield of $ \mathbb{F}_{q^n} $. We then generalize to orbits under the normalizer of the Singer subgroup. In that situation some exceptional cases arise and some open cases remain. Finally we characterize linear isometries between such codes.
Citation: |
[1] | E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv, Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62 (2016), 1157-1165. doi: 10.1109/TIT.2016.2520479. |
[2] | M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wasserman, Existence of $q$-analogs of Steiner systems, Forum of Mathematics, Pi, 4 (2016). doi: 10.1017/fmp.2016.5. |
[3] | B. Chen and H. Liu, Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86 (2018), 1267-1279. doi: 10.1007/s10623-017-0394-9. |
[4] | A. Cossidente and M. J. de Resmini, Remarks on Singer cylic groups and their normalizers, Des. Codes Cryptogr., 32 (2004), 97-102. doi: 10.1023/B:DESI.0000029214.50635.17. |
[5] | K. Drudge, On the orbits of {S}inger groups and their subgroups, Electron. J. Combin., 9 (2002), Research Paper 15, 10 pp. doi: 10.37236/1632. |
[6] | A. Elsenhans, A. Kohnert and A. Wassermann, Construction of codes for network coding, In Proc. 19th Int. Symp. Math. Theory Netw. Syst., Budapest, Hungary, 2010, 1811–1814. |
[7] | T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173. doi: 10.1109/TIT.2010.2095232. |
[8] | N. Gill, On a conjecture of Degos, Cah. Topol. Géom. Différ. Catég., 57 (2016), 229-237. |
[9] | H. Gluesing-Luerssen and H. Lehmann, Distance distributions of cyclic orbit codes, Des. Codes Cryptogr., 89 (2021), 447-470. doi: 10.1007/s10623-020-00823-x. |
[10] | H. Gluesing-Luerssen, K. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9 (2015), 177-197. doi: 10.3934/amc.2015.9.177. |
[11] | J. Gomez-Calderon, On the stabilizer of companion matrices, Proc. Japan Acad. Ser. A Math. Sci., 69 (1993), 140-143. |
[12] | M. D. Hestenes, Singer groups, Canadian Journal of Mathematics, 22 (1970), 492-513. doi: 10.4153/CJM-1970-057-2. |
[13] | B. Huppert, Endliche Gruppen, Springer, Berlin, Heidelberg, New York, 1967. |
[14] | W. M. Kantor, Linear groups containing a Singer cycle, Journal of Algebra, 62 (1980), 232-234. doi: 10.1016/0021-8693(80)90214-8. |
[15] | R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591. doi: 10.1109/TIT.2008.926449. |
[16] | A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, In J. Calmet, W. Geiselmann, and J. M{ü}ller-Quade, editors, Mathematical Methods in Computer Science, volume 5393. Lecture Notes in Computer Science; Springer, Berlin, 2008, 31–42. doi: 10.1007/978-3-540-89994-5_4. |
[17] | K. Otal and F. Özbudak, Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85 (2017), 191-204. doi: 10.1007/s10623-016-0297-1. |
[18] | R. M. Roth, N. Raviv and I. Tamo, Construction of Sidon spaces with applications to coding, IEEE Trans. Inform. Theory, 64 (2018), 4412-4422. doi: 10.1109/TIT.2017.2766178. |
[19] | A.-L. Trautmann, Isometry and automorphisms of constant dimension codes, Adv. Math. Commun., 7 (2013), 147-160. doi: 10.3934/amc.2013.7.147. |
[20] | A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes, IEEE Trans. Inform. Theory, 59 (2013), 7386-7404. doi: 10.1109/TIT.2013.2274266. |
[21] | W. Zhao and X. Tang, A characterization of cyclic subspace codes via subspace polynomials, Finite Fields Appl., 57 (2019), 1-12. doi: 10.1016/j.ffa.2019.01.002. |