In [18], the authors show how, to any nilpotent group of class $ n $, one can associate a non-interactive key exchange protocol between $ n+1 $ users. The multilinear commutator maps associated to nilpotent groups play a key role in this protocol. In the present paper, we explore some alternative platforms, such as pro-$ p $ groups.
Citation: |
[1] |
N. Blackburn, On a special class of p-groups, Acta Math., 100 (1958), 45-92.
doi: 10.1007/BF02559602.![]() ![]() ![]() |
[2] |
D. Boneh and A. Silverberg, Applications of multilinear forms to cryptography, in Topics in Algebraic and Noncommutative Geometry, Contemp. Math., 324, Amer. Math. Soc., Providence, RI, 2003, 71–90.
doi: 10.1090/conm/324/05731.![]() ![]() ![]() |
[3] |
J.-S. Coron, T. Lepoint and M. Tibouchi, Practical multilinear maps over the integers, in Advances in Cryptology–-CRYPTO 2013. Part I, Lecture Notes in Comput. Sci., 8042, Springer, Heidelberg, 2013,476–493.
doi: 10.1007/978-3-642-40041-4_26.![]() ![]() ![]() |
[4] |
B. den Boer, Diffie-Hellman is as strong as discrete log for certain primes, in Advances in Cryptology–-CRYPTO '88, Lecture Notes in Comput. Sci., 403, Springer, Berlin, 1990,530–539.
doi: 10.1007/0-387-34799-2_38.![]() ![]() ![]() |
[5] |
W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, 22 (1976), 644-654.
doi: 10.1109/tit.1976.1055638.![]() ![]() ![]() |
[6] |
E. S. V. Freire, D. Hofheinz, E. Kiltz and K. G. Paterson, Non-interactive key exchange, in Public-Key Cryptography – PKC 2013, Lecture Notes in Comput. Sci., 7778, Springer, Berlin, Heidelberg, 2013,254–271.
doi: 10.1007/978-3-642-36362-7_17.![]() ![]() |
[7] |
S. Garg, C. Gentry and S. Halevi, Candidate multilinear maps from ideal lattices, in Advances in Cryptology–-EUROCRYPT 2013, Lecture Notes in Comput. Sci., 7881, Springer, Heidelberg, 2013, 1–17.
doi: 10.1007/978-3-642-38348-9_1.![]() ![]() ![]() |
[8] |
C. Gentry, S. Gorbunov and S. Halevi, Graph-induced multilinear maps from lattices, in Theory of Cryptography. Part II, Lecture Notes in Comput. Sci., 9015, Springer, Heidelberg, 2015,498–527.
doi: 10.1007/978-3-662-46497-7_20.![]() ![]() ![]() |
[9] |
J. González-Sánchez and B. Klopsch., Analytic pro-p groups of small dimensions, J. Group Theory, 12 (2009), 711-734.
doi: 10.1515/JGT.2009.006.![]() ![]() ![]() |
[10] |
M.-D. A. Huang, Algebraic blinding and cryptographic trilinear maps, preprint, arXiv: 2002.07923.
![]() |
[11] |
M.-D. A. Huang, Trilinear maps for cryptography, preprint, arXiv: 1803.10325.
![]() |
[12] |
M.-D. A. Huang, Trilinear maps for cryptography Ⅱ, preprint, arXiv: 1810.03646.
![]() |
[13] |
M.-D. A. Huang, Weil descent and cryptographic trilinear maps, preprint, arXiv: 1908.06891.
![]() |
[14] |
B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967.
doi: 10.1007/978-3-642-64981-3.![]() ![]() ![]() |
[15] |
I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, RI, 2008.
doi: 10.1090/gsm/092.![]() ![]() ![]() |
[16] |
D. Kahrobaei and M. Noce, Algorithmic problems in Engel groups and cryptographic applications, Int. J. Group Theory, 9 (2020), 231-250.
![]() ![]() |
[17] |
D. Kahrobaei, A. Tortora and M. Tota, A closer look at multilinear cryptography using nilpotent groups, preprint, arXiv: 2102.04120.
![]() |
[18] |
D. Kahrobaei, A. Tortora and M. Tota, Multilinear cryptography using nilpotent groups, in Elementary Theory of Groups and Group Rings, and Related Topics, De Gruyter Proc. Math., De Gruyter, Berlin, 2020,127–134.
doi: 10.1515/9783110638387-013.![]() ![]() ![]() |
[19] |
A. Mahalanobis and P. Shinde, Bilinear cryptography using groups of nilpotency class 2, in Cryptography and Coding, Lecture Notes in Comput. Sci., 10655, Springer, Cham, 2017,127–134.
doi: 10.1007/978-3-319-71045-7_7.![]() ![]() ![]() |
[20] |
U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms, in Advances in Cryptology–-CRYPTO '94, Lecture Notes in Comput. Sci., 839, Springer, Berlin, 1994,271–281.
doi: 10.1007/3-540-48658-5_26.![]() ![]() ![]() |
[21] |
S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance, IEEE Trans. Inform. Theory, 24 (1978), 106-110.
doi: 10.1109/tit.1978.1055817.![]() ![]() ![]() |
[22] |
L. Ribes and P. Zalesskii, Profinite Groups, A Series of Modern Surveys in Mathematics, 40, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-01642-4.![]() ![]() ![]() |
[23] |
M. Stanojkovski, Intense Automorphisms of Finite Groups, Memoirs of the American Mathematical Society, 2021, volume 273, no. 1341, v+117 pp.
doi: 10.1090/memo/1341.![]() ![]() |
[24] |
A. V. Sutherland, Order Computations in Generic Groups, Ph.D thesis, Massachusetts Institute of Technology, 2007.
![]() ![]() |
[25] |
A. V. Sutherland, Structure computation and discrete logarithms in finite abelian p-groups, Math. Comp., 80 (2011), 477-500.
doi: 10.1090/S0025-5718-10-02356-2.![]() ![]() ![]() |
[26] |
E. Teske, The Pohlig-Hellman method generalized for group structure computation, J. Symbolic Comput., 27 (1999), 521-534.
doi: 10.1006/jsco.1999.0279.![]() ![]() ![]() |
[27] |
M. Tibouchi, Cryptographic Multilinear Maps: A Status Report, CRYPTREC Technical Report, volume 2603, 2016, 1–54. Available from: https://www.cryptrec.go.jp/exreport/cryptrec-ex-2603-2016.pdf.
![]() |
[28] |
J. S. Wilson, Profinite Groups, London Mathematical Society Monographs, New Series, 19, The Clarendon Press, Oxford University Press, New York, 1998.
![]() ![]() |