• Previous Article
    The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs
  • AMC Home
  • This Issue
  • Next Article
    New type i binary [72, 36, 12] self-dual codes from composite matrices and R1 lifts
doi: 10.3934/amc.2021042
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the weight distribution of the cosets of MDS codes

1. 

Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences, Moscow, 127051, Russian Federation

2. 

Department of Mathematics and Computer Science, University of Perugia, Perugia, 06123, Italy

* Corresponding author: Alexander A. Davydov

Received  January 2021 Revised  June 2021 Early access September 2021

The weight distribution of the cosets of maximum distance separable (MDS) codes is considered. In 1990, P.G. Bonneau proposed a relation to obtain the full weight distribution of a coset of an MDS code with minimum distance $ d $ using the known numbers of vectors of weights $ \le d-2 $ in this coset. In this paper, the Bonneau formula is transformed into a more structured and convenient form. The new version of the formula allows to consider effectively cosets of distinct weights $ W $. (The weight $ W $ of a coset is the smallest Hamming weight of any vector in the coset.) For each of the considered $ W $ or regions of $ W $, special relations more simple than the general ones are obtained. For the MDS code cosets of weight $ W = 1 $ and weight $ W = d-1 $ we obtain formulas of the weight distributions depending only on the code parameters. This proves that all the cosets of weight $ W = 1 $ (as well as $ W = d-1 $) have the same weight distribution. The cosets of weight $ W = 2 $ or $ W = d-2 $ may have different weight distributions; in this case, we proved that the distributions are symmetrical in some sense. The weight distributions of the cosets of MDS codes corresponding to arcs in the projective plane $ \mathrm{PG}(2,q) $ are also considered. For MDS codes of covering radius $ R = d-1 $ we obtain the number of the weight $ W = d-1 $ cosets and their weight distribution that gives rise to a certain classification of the so-called deep holes. We show that any MDS code of covering radius $ R = d-1 $ is an almost perfect multiple covering of the farthest-off points (deep holes); moreover, it corresponds to an optimal multiple saturating set in the projective space $ \mathrm{PG}(N,q) $.

Citation: Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2021042
References:
[1]

E. F. Assmus and H. F. Mattson, The weight-distribution of a coset of a linear code, IEEE Trans. Inform. Theory, 24 (1978), 497-497.  doi: 10.1109/tit.1978.1055903.  Google Scholar

[2]

S. Ball, Finite Geometry and Combinatorial Applications, London Math. Soc. Student Texts 82, Cambridge Univ. Press, Cambridge, UK, 2015. doi: 10.1017/CBO9781316257449.  Google Scholar

[3]

S. Ball and M. Lavrauw, Arcs in finite projective spaces, EMS Surveys in Math. Sciences, 6 (2019), 133-172.  doi: 10.4171/EMSS/33.  Google Scholar

[4]

D. BartoliA. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, Multiple coverings of the farthest-off points with small density from projective geometry, Adv. Math. Commun., 9 (2015), 63-85.  doi: 10.3934/amc.2015.9.63.  Google Scholar

[5]

D. BartoliA. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, Further results on multiple coverings of the farthest-off points, Adv. Math. Commun., 10 (2016), 613-632.  doi: 10.3934/amc.2016030.  Google Scholar

[6]

D. BartoliA. A. DavydovS. Marcugini and F. Pambianco, On the smallest size of an almost complete subset of a conic in PG(2, q) and extendability of Reed–Solomon codes, Probl. Inform. Transmiss., 54 (2018), 101-115.  doi: 10.1134/S0032946018020011.  Google Scholar

[7]

D. Bartoli, A. A. Davydov, S. Marcugini and F. Pambianco, On planes through points off the twisted cubic in G(3, q) and multiple covering codes, Finite Fields Appl., 67 (2020), paper 101710, 25 pp. doi: 10.1016/j.ffa.2020.101710.  Google Scholar

[8]

D. BartoliM. Giulietti and I. Platoni, On the covering radius of MDS codes, IEEE Trans. Inform. Theory, 61 (2015), 801-811.  doi: 10.1109/TIT.2014.2385084.  Google Scholar

[9]

R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, Reading, 1983.  Google Scholar

[10] R. E. Blahut, Algebraic Codes on Lines, Planes, and Curves, Cambridge Univ. Press, Cambridge, 2008.  doi: 10.1017/CBO9780511543401.  Google Scholar
[11]

A. Blokhuis, R. Pellikaan and T. Szönyi, The extended coset leader weight enumerator of a twisted cubic code, preprint, arXiv: 2103.16904. Google Scholar

[12]

P. G. Bonneau, Weight distribution of translates of MDS codes, Combinatorica, 10 (1990), 103-105.  doi: 10.1007/BF02122700.  Google Scholar

[13]

P. CharpinT. Helleseth and V. A. Zinoviev, The coset distribution of triple-error-correcting binary primitive BCH codes, IEEE Trans. Inform. Theory, 52 (2006), 1727-1732.  doi: 10.1109/TIT.2006.871605.  Google Scholar

[14]

K.-M. Cheung, More on the decoder error probability for Reed-Solomon codes, IEEE Trans. Inform. Theory, 35 (1989), 895-900.  doi: 10.1109/18.32169.  Google Scholar

[15]

K.-M. Cheung, Identities and approximations for the weight distribution of q-ary codes, IEEE Trans. Inform. Theory, 36 (1990), 1149-1153.  doi: 10.1109/18.57216.  Google Scholar

[16]

K.-M. Cheung, On the decoder error probability of block codes, IEEE Transactions on Communications, 40 (1992), 857-859.  doi: 10.1109/26.141450.  Google Scholar

[17]

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland Math. Library, 54, Elsevier, Amsterdam, The Netherlands, 1997.  Google Scholar

[18]

A. A. Davydov, S. Marcugini and F. Pambianco, On integral weight spectra of the MDS codes cosets of weight 1, 2, and 3, preprint, arXiv: 2007.02405. Google Scholar

[19]

A. A. DavydovS. Marcugini and F. Pambianco, On cosets weight distributions of the doubly-extended Reed-Solomon codes of codimension 4, IEEE Trans. Inform. Theory, 67 (2021), 5088-5096.  doi: 10.1109/TIT.2021.3089129.  Google Scholar

[20]

P. Delsarte, Four fundamental parameters of a code and their combinatorial significance, Inform. Control, 23 (1973), 407-438.  doi: 10.1016/S0019-9958(73)80007-5.  Google Scholar

[21]

P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep. Supplements, vol. 10. Centrex Publishing Co., Eindhoven, The Netherlands, 1973.  Google Scholar

[22]

P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.  doi: 10.1109/18.720545.  Google Scholar

[23]

T. Etzion and L. Storme, Galois geometries and coding theory, Des. Codes Cryptogr., 78 (2016), 311-350.  doi: 10.1007/s10623-015-0156-5.  Google Scholar

[24]

M. F. EzermanM. Grassl and P. Solé, The weights in MDS codes, IEEE Trans. Inform. Theory, 57 (2011), 392-396.  doi: 10.1109/TIT.2010.2090246.  Google Scholar

[25]

E. M. Gabidulin and T. Kløve, The Newton radius of MDS codes, in Proc. Inf. Theory Workshop (ITW 1998) (Cat. No.98EX131), Killarney, Ireland, Jun. 1998, 50–51. doi: 10.1109/ITW.1998.706412.  Google Scholar

[26]

T. Helleseth, The weight distribution of the coset leaders of some classes of codes with related parity-check matrices, Discrete Math., 28 (1979), 161-171.  doi: 10.1016/0012-365X(79)90093-1.  Google Scholar

[27] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2 edition, Oxford Univ. Press, Oxford, 1998.   Google Scholar
[28]

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: Update 2001, in (eds. A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Thas), Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16-21, 2000), Develop. Math., 3, Kluwer, Dordrecht, (2001), 201–246. doi: 10.1007/978-1-4613-0283-4_13.  Google Scholar

[29]

J. W. P. Hirschfeld and J. A. Thas, Open problems in finite projective spaces, Finite Fields Appl., 32 (2015), 44-81.  doi: 10.1016/j.ffa.2014.10.006.  Google Scholar

[30]

S. Hong and R. Wu, On deep holes of generalized Reed-Solomon codes, AIMS Math., 1 (2016), 96-101.  doi: 10.3934/Math.2016.2.96.  Google Scholar

[31] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[32]

R. Jurrius and R. Pellikaan, The coset leader and list weight enumerator, in (eds. G. Kyureghyan, G. L. Mullen, A. Pott), Contemporary Math., 632, Topics in Finite Fields American Mathematical Society, Providence, RI, USA, (2015), 229–251. doi: 10.1090/conm/632/12631.  Google Scholar

[33]

J. Justesen and T. Høholdt, Bounds on list decoding of MDS codes, IEEE Trans. Inform. Theory, 47 (2001), 1604-1609.  doi: 10.1109/18.923744.  Google Scholar

[34]

K. Kaipa, Deep holes and MDS extensions of Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 4940-4948.  doi: 10.1109/TIT.2017.2706677.  Google Scholar

[35]

T. Kasami and S. Lin, On the probability of undetected error for the maximum distance separable codes, IEEE Trans. Commun., 32 (1984), 998-1006.  doi: 10.1109/TCOM.1984.1096175.  Google Scholar

[36]

T. Kløve, Codes for Error Detection, World Scientific Publ., Singapore, 2007. doi: 10.1142/9789812770516.  Google Scholar

[37]

I. Landjev and L. Storme, Galois geometry and coding theory, in Current Research Topics in Galois geometry, (eds. J. De Beule and L. Storme), Chapter 8, NOVA Academic, New York, (2011), 187–214. Google Scholar

[38]

J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell Syst. Tech. J., 42 (1963), 79-94.  doi: 10.1002/j.1538-7305.1963.tb04003.x.  Google Scholar

[39]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 3rd edition, North-Holland, Amsterdam, The Netherlands, 1981.  Google Scholar

[40]

J. Riordan, Combinatorial Identities, Willey, New York, 1968.  Google Scholar

[41] R. Roth, Introduction to Coding Theory, Cambridge Univ. Press, Cambridge, 2006.  doi: 10.1017/CBO9780511808968.  Google Scholar
[42]

J. R. Schatz, On the weight distributions of cosets of a linear code, American Math. Month., 87 (1980), 548-551.  doi: 10.1080/00029890.1980.11995087.  Google Scholar

[43]

L. Storme, Completeness of normal rational curves, J. Algebraic Combin., 1 (1992), 197-202.  doi: 10.1023/A:1022428405084.  Google Scholar

[44]

X. Xu and Y. Xu, Some results on deep holes of generalized projective Reed-Solomon codes, AIMS Math., 4 (2019), 176-192.  doi: 10.3934/math.2019.2.176.  Google Scholar

[45]

J. ZhangD. Wan and K. Kaipa, Deep holes of projective Reed-Solomon codes, IEEE Trans. Inform. Theory, 66 (2020), 2392-2401.  doi: 10.1109/TIT.2019.2940962.  Google Scholar

show all references

References:
[1]

E. F. Assmus and H. F. Mattson, The weight-distribution of a coset of a linear code, IEEE Trans. Inform. Theory, 24 (1978), 497-497.  doi: 10.1109/tit.1978.1055903.  Google Scholar

[2]

S. Ball, Finite Geometry and Combinatorial Applications, London Math. Soc. Student Texts 82, Cambridge Univ. Press, Cambridge, UK, 2015. doi: 10.1017/CBO9781316257449.  Google Scholar

[3]

S. Ball and M. Lavrauw, Arcs in finite projective spaces, EMS Surveys in Math. Sciences, 6 (2019), 133-172.  doi: 10.4171/EMSS/33.  Google Scholar

[4]

D. BartoliA. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, Multiple coverings of the farthest-off points with small density from projective geometry, Adv. Math. Commun., 9 (2015), 63-85.  doi: 10.3934/amc.2015.9.63.  Google Scholar

[5]

D. BartoliA. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, Further results on multiple coverings of the farthest-off points, Adv. Math. Commun., 10 (2016), 613-632.  doi: 10.3934/amc.2016030.  Google Scholar

[6]

D. BartoliA. A. DavydovS. Marcugini and F. Pambianco, On the smallest size of an almost complete subset of a conic in PG(2, q) and extendability of Reed–Solomon codes, Probl. Inform. Transmiss., 54 (2018), 101-115.  doi: 10.1134/S0032946018020011.  Google Scholar

[7]

D. Bartoli, A. A. Davydov, S. Marcugini and F. Pambianco, On planes through points off the twisted cubic in G(3, q) and multiple covering codes, Finite Fields Appl., 67 (2020), paper 101710, 25 pp. doi: 10.1016/j.ffa.2020.101710.  Google Scholar

[8]

D. BartoliM. Giulietti and I. Platoni, On the covering radius of MDS codes, IEEE Trans. Inform. Theory, 61 (2015), 801-811.  doi: 10.1109/TIT.2014.2385084.  Google Scholar

[9]

R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, Reading, 1983.  Google Scholar

[10] R. E. Blahut, Algebraic Codes on Lines, Planes, and Curves, Cambridge Univ. Press, Cambridge, 2008.  doi: 10.1017/CBO9780511543401.  Google Scholar
[11]

A. Blokhuis, R. Pellikaan and T. Szönyi, The extended coset leader weight enumerator of a twisted cubic code, preprint, arXiv: 2103.16904. Google Scholar

[12]

P. G. Bonneau, Weight distribution of translates of MDS codes, Combinatorica, 10 (1990), 103-105.  doi: 10.1007/BF02122700.  Google Scholar

[13]

P. CharpinT. Helleseth and V. A. Zinoviev, The coset distribution of triple-error-correcting binary primitive BCH codes, IEEE Trans. Inform. Theory, 52 (2006), 1727-1732.  doi: 10.1109/TIT.2006.871605.  Google Scholar

[14]

K.-M. Cheung, More on the decoder error probability for Reed-Solomon codes, IEEE Trans. Inform. Theory, 35 (1989), 895-900.  doi: 10.1109/18.32169.  Google Scholar

[15]

K.-M. Cheung, Identities and approximations for the weight distribution of q-ary codes, IEEE Trans. Inform. Theory, 36 (1990), 1149-1153.  doi: 10.1109/18.57216.  Google Scholar

[16]

K.-M. Cheung, On the decoder error probability of block codes, IEEE Transactions on Communications, 40 (1992), 857-859.  doi: 10.1109/26.141450.  Google Scholar

[17]

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland Math. Library, 54, Elsevier, Amsterdam, The Netherlands, 1997.  Google Scholar

[18]

A. A. Davydov, S. Marcugini and F. Pambianco, On integral weight spectra of the MDS codes cosets of weight 1, 2, and 3, preprint, arXiv: 2007.02405. Google Scholar

[19]

A. A. DavydovS. Marcugini and F. Pambianco, On cosets weight distributions of the doubly-extended Reed-Solomon codes of codimension 4, IEEE Trans. Inform. Theory, 67 (2021), 5088-5096.  doi: 10.1109/TIT.2021.3089129.  Google Scholar

[20]

P. Delsarte, Four fundamental parameters of a code and their combinatorial significance, Inform. Control, 23 (1973), 407-438.  doi: 10.1016/S0019-9958(73)80007-5.  Google Scholar

[21]

P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep. Supplements, vol. 10. Centrex Publishing Co., Eindhoven, The Netherlands, 1973.  Google Scholar

[22]

P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.  doi: 10.1109/18.720545.  Google Scholar

[23]

T. Etzion and L. Storme, Galois geometries and coding theory, Des. Codes Cryptogr., 78 (2016), 311-350.  doi: 10.1007/s10623-015-0156-5.  Google Scholar

[24]

M. F. EzermanM. Grassl and P. Solé, The weights in MDS codes, IEEE Trans. Inform. Theory, 57 (2011), 392-396.  doi: 10.1109/TIT.2010.2090246.  Google Scholar

[25]

E. M. Gabidulin and T. Kløve, The Newton radius of MDS codes, in Proc. Inf. Theory Workshop (ITW 1998) (Cat. No.98EX131), Killarney, Ireland, Jun. 1998, 50–51. doi: 10.1109/ITW.1998.706412.  Google Scholar

[26]

T. Helleseth, The weight distribution of the coset leaders of some classes of codes with related parity-check matrices, Discrete Math., 28 (1979), 161-171.  doi: 10.1016/0012-365X(79)90093-1.  Google Scholar

[27] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2 edition, Oxford Univ. Press, Oxford, 1998.   Google Scholar
[28]

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: Update 2001, in (eds. A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Thas), Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16-21, 2000), Develop. Math., 3, Kluwer, Dordrecht, (2001), 201–246. doi: 10.1007/978-1-4613-0283-4_13.  Google Scholar

[29]

J. W. P. Hirschfeld and J. A. Thas, Open problems in finite projective spaces, Finite Fields Appl., 32 (2015), 44-81.  doi: 10.1016/j.ffa.2014.10.006.  Google Scholar

[30]

S. Hong and R. Wu, On deep holes of generalized Reed-Solomon codes, AIMS Math., 1 (2016), 96-101.  doi: 10.3934/Math.2016.2.96.  Google Scholar

[31] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[32]

R. Jurrius and R. Pellikaan, The coset leader and list weight enumerator, in (eds. G. Kyureghyan, G. L. Mullen, A. Pott), Contemporary Math., 632, Topics in Finite Fields American Mathematical Society, Providence, RI, USA, (2015), 229–251. doi: 10.1090/conm/632/12631.  Google Scholar

[33]

J. Justesen and T. Høholdt, Bounds on list decoding of MDS codes, IEEE Trans. Inform. Theory, 47 (2001), 1604-1609.  doi: 10.1109/18.923744.  Google Scholar

[34]

K. Kaipa, Deep holes and MDS extensions of Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 4940-4948.  doi: 10.1109/TIT.2017.2706677.  Google Scholar

[35]

T. Kasami and S. Lin, On the probability of undetected error for the maximum distance separable codes, IEEE Trans. Commun., 32 (1984), 998-1006.  doi: 10.1109/TCOM.1984.1096175.  Google Scholar

[36]

T. Kløve, Codes for Error Detection, World Scientific Publ., Singapore, 2007. doi: 10.1142/9789812770516.  Google Scholar

[37]

I. Landjev and L. Storme, Galois geometry and coding theory, in Current Research Topics in Galois geometry, (eds. J. De Beule and L. Storme), Chapter 8, NOVA Academic, New York, (2011), 187–214. Google Scholar

[38]

J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell Syst. Tech. J., 42 (1963), 79-94.  doi: 10.1002/j.1538-7305.1963.tb04003.x.  Google Scholar

[39]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 3rd edition, North-Holland, Amsterdam, The Netherlands, 1981.  Google Scholar

[40]

J. Riordan, Combinatorial Identities, Willey, New York, 1968.  Google Scholar

[41] R. Roth, Introduction to Coding Theory, Cambridge Univ. Press, Cambridge, 2006.  doi: 10.1017/CBO9780511808968.  Google Scholar
[42]

J. R. Schatz, On the weight distributions of cosets of a linear code, American Math. Month., 87 (1980), 548-551.  doi: 10.1080/00029890.1980.11995087.  Google Scholar

[43]

L. Storme, Completeness of normal rational curves, J. Algebraic Combin., 1 (1992), 197-202.  doi: 10.1023/A:1022428405084.  Google Scholar

[44]

X. Xu and Y. Xu, Some results on deep holes of generalized projective Reed-Solomon codes, AIMS Math., 4 (2019), 176-192.  doi: 10.3934/math.2019.2.176.  Google Scholar

[45]

J. ZhangD. Wan and K. Kaipa, Deep holes of projective Reed-Solomon codes, IEEE Trans. Inform. Theory, 66 (2020), 2392-2401.  doi: 10.1109/TIT.2019.2940962.  Google Scholar

[1]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[2]

Daniele Bartoli, Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Multiple coverings of the farthest-off points with small density from projective geometry. Advances in Mathematics of Communications, 2015, 9 (1) : 63-85. doi: 10.3934/amc.2015.9.63

[3]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[4]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[5]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

[6]

Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059

[7]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[8]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[9]

Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11

[10]

Janne I. Kokkala, Patric R. J.  Östergård. Further results on the classification of MDS codes. Advances in Mathematics of Communications, 2016, 10 (3) : 489-498. doi: 10.3934/amc.2016020

[11]

Can Xiang, Jinquan Luo. Some subfield codes from MDS codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021023

[12]

Daniele Bartoli, Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Further results on multiple coverings of the farthest-off points. Advances in Mathematics of Communications, 2016, 10 (3) : 613-632. doi: 10.3934/amc.2016030

[13]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[14]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[15]

Simeon Ball, Guillermo Gamboa, Michel Lavrauw. On additive MDS codes over small fields. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021024

[16]

Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks & Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115

[17]

Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1269-1289. doi: 10.3934/cpaa.2009.8.1269

[18]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[19]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[20]

Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349

2020 Impact Factor: 0.935

Article outline

Figures and Tables

[Back to Top]