[1]
|
E. R. Berlekamp, Negacyclic Codes for the Lee Metric, N. C. Chapel Hill, North Carolina State University, Dept. of Statistics, 1966.
|
[2]
|
E. R. Berlekamp, Algebraic Coding Theory, World Scientific, Singapore, 2015.
doi: 10.1142/9407.
|
[3]
|
C. Carlet, C. Ding and J. Yuan, Linear codes from highly nonlinear functions and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.
doi: 10.1109/TIT.2005.847722.
|
[4]
|
Y. Chen, N. Li and X. Zeng, A class of binary cyclic codes with generalized Niho exponents, Finite Fields Appl., 43 (2017), 123-140.
doi: 10.1016/j.ffa.2016.09.005.
|
[5]
|
B. Chen, S. Ling and G. Zhang, Application of constacyclic codes to quantum MDS codes, IEEE Trans. Inf. Theory, 61 (2015), 1474-1484.
doi: 10.1109/TIT.2015.2388576.
|
[6]
|
R. Chien, Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes, IEEE Trans. Inf. Theory, 10 (1964), 357-363.
doi: 10.1109/TIT.1964.1053699.
|
[7]
|
C. Ding, Linear codes from some 2-designs, IEEE Trans. Inf. Theory, 61 (2015), 3265-3275.
doi: 10.1109/TIT.2015.2420118.
|
[8]
|
C. Ding and T. Helleseth, Optimal ternary cyclic codes from monomials, IEEE Trans. Inf. Theory, 59 (2013), 5898-5904.
doi: 10.1109/TIT.2013.2260795.
|
[9]
|
C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theor. Comput. Sci., 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011.
|
[10]
|
C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.
doi: 10.1109/TIT.2010.2048504.
|
[11]
|
C. Fan, N. Li and Z. Zhou, A class of optimal ternary cyclic codes and their duals, Finite Fields Appl., 37 (2016), 193-202.
doi: 10.1016/j.ffa.2015.10.004.
|
[12]
|
J. Fan, Y. Xu, Y. Xia and X. Zeng, Two families of Niho sequences having four-valued cross correlation with $m$-sequences, Science China Mathematics, 60 (2017), 2377-2390.
doi: 10.1007/s11425-016-9061-y.
|
[13]
|
J. Fan and Y. Zhang, Optimal quinary cyclic codes with minimum distance four, Chinese J. Electron., 29 (2020), 515-524.
doi: 10.1049/cje.2020.02.011.
|
[14]
|
J. Fan, Y. Zhang and X. Shi, Cyclic codes with four weights and sequence families with four-valued correlation functions, Chinese J. Electron., 28 (2019), 288-293.
doi: 10.1049/cje.2018.06.012.
|
[15]
|
G. D. Forney, On decoding BCH codes, IEEE Trans. Inf. Theory, 11 (1995), 549-557.
doi: 10.1109/tit.1965.1053825.
|
[16]
|
M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, www.codetables.de">arXiv: www.codetables.de, 2007.
|
[17]
|
X. Hu, G. Zhang and B. Chen, Construction of new nonbinary quantum codes, Int. J. Theor. Phys., 54 (2015), 92-99.
doi: 10.1007/s10773-014-2204-8.
|
[18]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[19]
|
G. Hughes, Constacyclic codes, cocycles and a u+v|u-v construction, IEEE Trans. Inf. Theory, 46 (2000), 674-680.
doi: 10.1109/18.825841.
|
[20]
|
X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 1193-1197.
doi: 10.1109/TIT.2012.2220519.
|
[21]
|
A. Krishna and D. V. Sarwate, Pseudocyclic maximum distance separable codes, IEEE Trans. Inf. Theory, 36 (1990), 880-884.
doi: 10.1109/18.53751.
|
[22]
|
C. Li, N. Li, T. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014), 4710-4721.
doi: 10.1109/TIT.2014.2329694.
|
[23]
|
N. Li, C. Li, T. Helleseth, C. Ding and X. Tang, Optimal ternary cyclic codes with minimum distance four and five, Finite Fields Appl., 30 (2014), 100-120.
doi: 10.1016/j.ffa.2014.06.001.
|
[24]
|
R. Lidl and H. Niederreiter, Finite Fields, Encycl. Math. Appl., Cambridge University Press, Cambridge, 1997.
doi: 10.1017/CBO9780511525926.
|
[25]
|
E. Prange, Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms, AFCRC-TN-58–156, Cambridge, Mass, 1985.
|
[26]
|
G. Xu, X. Cao and S. Xu, Optimal p-ary cyclic codes with minimum distance four from monomials, Cryptography and Communications, 8 (2016), 541-554.
doi: 10.1007/s12095-015-0159-0.
|
[27]
|
X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.
doi: 10.1016/j.ffa.2009.12.001.
|
[28]
|
Y. Zhou, X. Kai, S. Zhu and J. Li, On the minimum distance of negacyclic codes with two zeros, Finite Fields Appl., 55 (2019), 134-150.
doi: 10.1016/j.ffa.2018.09.006.
|