\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal quinary negacyclic codes with minimum distance four

  • * Corresponding author: Yanhai Zhang

    * Corresponding author: Yanhai Zhang

This work was supported by Guangxi Natural Science Foundation of China (No. 2018GXNSFBA281019) and the National Natural Science Foundation of China (No. 12061027)

Abstract Full Text(HTML) Figure(0) / Table(4) Related Papers Cited by
  • Based on solutions of certain equations over finite yields, a necessary and sufficient condition for the quinary negacyclic codes with parameters $ [\frac{5^m-1}{2},\frac{5^m-1}{2}-2m,4] $ to have generator polynomial $ m_{\alpha^3}(x)m_{\alpha^e}(x) $ is provided. Several classes of new optimal quinary negacyclic codes with the same parameters are constructed by analyzing irreducible factors of certain polynomials over finite fields. Moreover, several classes of new optimal quinary negacyclic codes with these parameters and generator polynomial $ m_{\alpha}(x)m_{\alpha^e}(x) $ are also presented.

    Mathematics Subject Classification: Primary: 94B15, 12E12; Secondary: 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Known optimal quinary negacyclic codes $ \mathcal{N}_5(1,e) $

    Type e conditions Reference
    1) $ 5^m-2 $ $ m $ is odd [28]
    2) $ \frac{5^{k}+1}{2} $ gcd$ (k,2m)=1 $ [28]
    3) $ \frac{2\cdot 5^m-1}{3} $ $ m $ is odd [28]
    4) $ 5^k+2 $ $ m=2k $, $ k $ is even [28]
    5) $ \frac{5^{\frac{m+1}{2}}-1}{2}+\frac{5^m-1}{4} $ $ m>1 $ is odd [28]
    6) $ \frac{5^m-1}{2}-3 $ $ m>1 $ is odd [28]
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal quinary negacyclic codes $ \mathcal{N}_5(1,u) $

    Type u conditions Reference
    ⅰ) $ \frac{5^m-1}{2}+\frac{5^t+1}{2} $ $ 1\leq t<m,{\rm{gcd}}(t,m) = 1 $ Section 3.1
    ⅱ) $ 5^{\frac{m+1}{2}}+2 $ $ m \not\equiv 0\left( {{\rm{mod}}\;{\rm{3}}} \right) $ Section 3.2
    ⅲ) $ \frac{5^m-1}{2}+5^s+2 $ $ m = 2s, s \;{\rm{is\;even}} $ Section 3.3
     | Show Table
    DownLoad: CSV

    Table 3.  Optimal quinary negacyclic codes $ \mathcal{N}_5(3,u) $

    Type u conditions Reference
    ⅰ) $ 5^m-4 $ $ m > 1\; {\rm{is\;odd}} $ Section 4.2
    ⅱ) $ \frac{5^m-1}{2}-1 $ $ m > 1\; {\rm{is\;odd}} $ Section 4.3
    ⅲ) $ \frac{5^m-1}{2}-9 $ $ m > 1\; {\rm{is\;odd}} $ Section 4.3
     | Show Table
    DownLoad: CSV

    Table 4.  Weight distributions of $ \mathcal{N}_5(3,121)^{\bot}, \mathcal{N}_5(3,61)^{\bot} \;and\;\mathcal{N}_5(3,53)^{\bot} $

    $ \mathcal{N}_5(3,121)^{\bot} $ $ \mathcal{N}_5(3,61)^{\bot} $ $ \mathcal{N}_5(3,53)^{\bot} $
    Weight Frequency Weight Frequency Weight Frequency
    0 1 0 1 0 1
    43 744 44 1488 44 1488
    46 2232 46 2232 46 2232
    47 744 48 744 48 744
    49 2976 49 2232 49 2232
    50 496 50 3224 50 3224
    51 744 51 1488 51 1488
    52 2976 52 1736 52 1736
    53 744 53 1736 53 1736
    54 744 57 744 57 744
    48 2232
    55 248
    56 744
     | Show Table
    DownLoad: CSV
  • [1] E. R. Berlekamp, Negacyclic Codes for the Lee Metric, N. C. Chapel Hill, North Carolina State University, Dept. of Statistics, 1966.
    [2] E. R. Berlekamp, Algebraic Coding Theory, World Scientific, Singapore, 2015. doi: 10.1142/9407.
    [3] C. CarletC. Ding and J. Yuan, Linear codes from highly nonlinear functions and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.
    [4] Y. ChenN. Li and X. Zeng, A class of binary cyclic codes with generalized Niho exponents, Finite Fields Appl., 43 (2017), 123-140.  doi: 10.1016/j.ffa.2016.09.005.
    [5] B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS codes, IEEE Trans. Inf. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.
    [6] R. Chien, Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes, IEEE Trans. Inf. Theory, 10 (1964), 357-363.  doi: 10.1109/TIT.1964.1053699.
    [7] C. Ding, Linear codes from some 2-designs, IEEE Trans. Inf. Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118.
    [8] C. Ding and T. Helleseth, Optimal ternary cyclic codes from monomials, IEEE Trans. Inf. Theory, 59 (2013), 5898-5904.  doi: 10.1109/TIT.2013.2260795.
    [9] C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theor. Comput. Sci., 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.
    [10] C. DingY. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.  doi: 10.1109/TIT.2010.2048504.
    [11] C. FanN. Li and Z. Zhou, A class of optimal ternary cyclic codes and their duals, Finite Fields Appl., 37 (2016), 193-202.  doi: 10.1016/j.ffa.2015.10.004.
    [12] J. FanY. XuY. Xia and X. Zeng, Two families of Niho sequences having four-valued cross correlation with $m$-sequences, Science China Mathematics, 60 (2017), 2377-2390.  doi: 10.1007/s11425-016-9061-y.
    [13] J. Fan and Y. Zhang, Optimal quinary cyclic codes with minimum distance four, Chinese J. Electron., 29 (2020), 515-524.  doi: 10.1049/cje.2020.02.011.
    [14] J. FanY. Zhang and X. Shi, Cyclic codes with four weights and sequence families with four-valued correlation functions, Chinese J. Electron., 28 (2019), 288-293.  doi: 10.1049/cje.2018.06.012.
    [15] G. D. Forney, On decoding BCH codes, IEEE Trans. Inf. Theory, 11 (1995), 549-557.  doi: 10.1109/tit.1965.1053825.
    [16] M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, www.codetables.de">arXiv: www.codetables.de, 2007.
    [17] X. HuG. Zhang and B. Chen, Construction of new nonbinary quantum codes, Int. J. Theor. Phys., 54 (2015), 92-99.  doi: 10.1007/s10773-014-2204-8.
    [18] W. C. Huffman and  V. PlessFundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
    [19] G. Hughes, Constacyclic codes, cocycles and a u+v|u-v construction, IEEE Trans. Inf. Theory, 46 (2000), 674-680.  doi: 10.1109/18.825841.
    [20] X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 1193-1197.  doi: 10.1109/TIT.2012.2220519.
    [21] A. Krishna and D. V. Sarwate, Pseudocyclic maximum distance separable codes, IEEE Trans. Inf. Theory, 36 (1990), 880-884.  doi: 10.1109/18.53751.
    [22] C. LiN. LiT. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014), 4710-4721.  doi: 10.1109/TIT.2014.2329694.
    [23] N. LiC. LiT. HellesethC. Ding and X. Tang, Optimal ternary cyclic codes with minimum distance four and five, Finite Fields Appl., 30 (2014), 100-120.  doi: 10.1016/j.ffa.2014.06.001.
    [24] R. Lidl and  H. NiederreiterFinite Fields, Encycl. Math. Appl., Cambridge University Press, Cambridge, 1997.  doi: 10.1017/CBO9780511525926.
    [25] E. Prange, Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms, AFCRC-TN-58–156, Cambridge, Mass, 1985.
    [26] G. XuX. Cao and S. Xu, Optimal p-ary cyclic codes with minimum distance four from monomials, Cryptography and Communications, 8 (2016), 541-554.  doi: 10.1007/s12095-015-0159-0.
    [27] X. ZengL. HuW. JiangQ. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.
    [28] Y. ZhouX. KaiS. Zhu and J. Li, On the minimum distance of negacyclic codes with two zeros, Finite Fields Appl., 55 (2019), 134-150.  doi: 10.1016/j.ffa.2018.09.006.
  • 加载中

Tables(4)

SHARE

Article Metrics

HTML views(1775) PDF downloads(640) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return