[1]
|
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005.
|
[2]
|
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York, 1968.
|
[3]
|
B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length lps and their duals, Discrete Appl. Math., 177 (2014), 60-70.
doi: 10.1016/j.dam.2014.05.046.
|
[4]
|
B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length 2lmpn, Finite Fields Appl., 33 (2015), 137-159.
doi: 10.1016/j.ffa.2014.11.006.
|
[5]
|
B. Chen, H. Liu and G. Zhang, A class of minimal cyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 285-300.
doi: 10.1007/s10623-013-9857-9.
|
[6]
|
H. Q. Dinh, Repeated-root constacyclic codes of length 2ps, Finite Fields Appl., 18 (2012), 133-143.
doi: 10.1016/j.ffa.2011.07.003.
|
[7]
|
H. Q. Dinh, Structure of repeated-root constacyclic codes of length 3ps and their duals, Discrete Math., 313 (2013), 983-991.
doi: 10.1016/j.disc.2013.01.024.
|
[8]
|
H. Q. Dinh, Structure of repeated-root cyclic and negacyclic codes of length 6ps and their duals, Contemp. Math., 609 (2014), 69-87.
doi: 10.1090/conm/609/12150.
|
[9]
|
H. Q. Dinh and Sa roj Rani, Structure of some classes of repeated-root constacyclic codes of length 2klmpn, Discrete Math., 342 (2019), 111609.
doi: 10.1016/j.disc.2019.111609.
|
[10]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[11]
|
L. Liu, L. Li, X. Kai and S. Zhu, Repeated-root constacyclic codes of length 3lps and their dual codes, Finite Fields Appl., 42 (2016), 269-295.
doi: 10.1016/j.ffa.2016.08.005.
|
[12]
|
Y. Liu, M. Shi, H. Q. Dinh and S. Sriboonchitta, Repeated-root constacyclic codes of length 3lmps, Advances in Math. Comm., 14 (2020), 359-378.
doi: 10.1017/CBO9780511807077.
|
[13]
|
S. Rani, Structure of repeated-root constacyclic codes of length 8lmpn, Asian-Eur. J. Math., 12(2019), 1950050, 17 pp.
doi: 10.1016/j.ffa.2016.08.005.
|
[14]
|
A. Sharma, Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field, Discrete Math., 338 (2015), 576-592.
doi: 10.1016/j.disc.2014.11.008.
|
[15]
|
A. Sharma, Repeated-root constacyclic codes of length ltp^s and their dual codes, Cryptogr. Commun., 7 (2015), 229-255.
doi: 10.1007/s12095-014-0106-5.
|
[16]
|
A. Sharma and S. Rani, Repeated-root constacyclic codes of length 4lmpn, Finite Fields Appl., 40 (2016), 163-200.
doi: 10.1016/j.ffa.2016.04.001.
|
[17]
|
Z. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing, Singapore, 2003.
doi: 10.1142/5350.
|
[18]
|
T. Wu, L. Liu, L. Li and S. Zhu, Repeated-root constacyclic codes of length 6lps and their dual codes, Advances in Math., 15 (2021), 167-189.
|
[19]
|
W. Zhao, X. Tang and Z. Gu, Constacyclic codes of length klmpn over a finite field, Finite Fields Appl., 52 (2018), 51-66.
doi: 10.1016/j.ffa.2018.03.004.
|