-
Previous Article
On the complexity of solving generic overdetermined bilinear systems
- AMC Home
- This Issue
-
Next Article
Some results on lightweight stream ciphers Fountain v1 & Lizard
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Repeated-root constacyclic codes of length 6lmpn
1. | School of Mathematics, Hefei University of Technology, Hefei 230009, China |
2. | Intelligent Interconnected Systems Laboratory of Anhui Province Hefei, China |
3. | School of Science, Anhui Agricultural University, Hefei 230036, Anhui, China |
Let $ \mathbb{F}_{q} $ be a finite field with character $ p $. In this paper, the multiplicative group $ \mathbb{F}_{q}^{*} = \mathbb{F}_{q}\setminus\{0\} $ is decomposed into a mutually disjoint union of $ \gcd(6l^mp^n,q-1) $ cosets over subgroup $ <\xi^{6l^mp^n}> $, where $ \xi $ is a primitive element of $ \mathbb{F}_{q} $. Based on the decomposition, the structure of constacyclic codes of length $ 6l^mp^n $ over finite field $ \mathbb{F}_{q} $ and their duals is established in terms of their generator polynomials, where $ p\neq{3} $ and $ l\neq{3} $ are distinct odd primes, $ m $ and $ n $ are positive integers. In addition, we determine the characterization and enumeration of all linear complementary dual(LCD) negacyclic codes and self-dual constacyclic codes of length $ 6l^mp^n $ over $ \mathbb{F}_{q} $.
References:
[1] |
G. K. Bakshi and M. Raka,
A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005. |
[2] |
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York, 1968. |
[3] |
B. Chen, H. Q. Dinh and H. Liu,
Repeated-root constacyclic codes of length lps and their duals, Discrete Appl. Math., 177 (2014), 60-70.
doi: 10.1016/j.dam.2014.05.046. |
[4] |
B. Chen, H. Q. Dinh and H. Liu,
Repeated-root constacyclic codes of length 2lmpn, Finite Fields Appl., 33 (2015), 137-159.
doi: 10.1016/j.ffa.2014.11.006. |
[5] |
B. Chen, H. Liu and G. Zhang,
A class of minimal cyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 285-300.
doi: 10.1007/s10623-013-9857-9. |
[6] |
H. Q. Dinh,
Repeated-root constacyclic codes of length 2ps, Finite Fields Appl., 18 (2012), 133-143.
doi: 10.1016/j.ffa.2011.07.003. |
[7] |
H. Q. Dinh,
Structure of repeated-root constacyclic codes of length 3ps and their duals, Discrete Math., 313 (2013), 983-991.
doi: 10.1016/j.disc.2013.01.024. |
[8] |
H. Q. Dinh,
Structure of repeated-root cyclic and negacyclic codes of length 6ps and their duals, Contemp. Math., 609 (2014), 69-87.
doi: 10.1090/conm/609/12150. |
[9] |
H. Q. Dinh and Sa roj Rani,
Structure of some classes of repeated-root constacyclic codes of length 2klmpn, Discrete Math., 342 (2019), 111609.
doi: 10.1016/j.disc.2019.111609. |
[10] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[11] |
L. Liu, L. Li, X. Kai and S. Zhu,
Repeated-root constacyclic codes of length 3lps and their dual codes, Finite Fields Appl., 42 (2016), 269-295.
doi: 10.1016/j.ffa.2016.08.005. |
[12] |
Y. Liu, M. Shi, H. Q. Dinh and S. Sriboonchitta,
Repeated-root constacyclic codes of length 3lmps, Advances in Math. Comm., 14 (2020), 359-378.
doi: 10.1017/CBO9780511807077. |
[13] |
S. Rani, Structure of repeated-root constacyclic codes of length 8lmpn, Asian-Eur. J. Math., 12(2019), 1950050, 17 pp.
doi: 10.1016/j.ffa.2016.08.005. |
[14] |
A. Sharma,
Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field, Discrete Math., 338 (2015), 576-592.
doi: 10.1016/j.disc.2014.11.008. |
[15] |
A. Sharma,
Repeated-root constacyclic codes of length ltp^s and their dual codes, Cryptogr. Commun., 7 (2015), 229-255.
doi: 10.1007/s12095-014-0106-5. |
[16] |
A. Sharma and S. Rani,
Repeated-root constacyclic codes of length 4lmpn, Finite Fields Appl., 40 (2016), 163-200.
doi: 10.1016/j.ffa.2016.04.001. |
[17] |
Z. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing, Singapore, 2003.
doi: 10.1142/5350. |
[18] |
T. Wu, L. Liu, L. Li and S. Zhu,
Repeated-root constacyclic codes of length 6lps and their dual codes, Advances in Math., 15 (2021), 167-189.
|
[19] |
W. Zhao, X. Tang and Z. Gu,
Constacyclic codes of length klmpn over a finite field, Finite Fields Appl., 52 (2018), 51-66.
doi: 10.1016/j.ffa.2018.03.004. |
show all references
References:
[1] |
G. K. Bakshi and M. Raka,
A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005. |
[2] |
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York, 1968. |
[3] |
B. Chen, H. Q. Dinh and H. Liu,
Repeated-root constacyclic codes of length lps and their duals, Discrete Appl. Math., 177 (2014), 60-70.
doi: 10.1016/j.dam.2014.05.046. |
[4] |
B. Chen, H. Q. Dinh and H. Liu,
Repeated-root constacyclic codes of length 2lmpn, Finite Fields Appl., 33 (2015), 137-159.
doi: 10.1016/j.ffa.2014.11.006. |
[5] |
B. Chen, H. Liu and G. Zhang,
A class of minimal cyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 285-300.
doi: 10.1007/s10623-013-9857-9. |
[6] |
H. Q. Dinh,
Repeated-root constacyclic codes of length 2ps, Finite Fields Appl., 18 (2012), 133-143.
doi: 10.1016/j.ffa.2011.07.003. |
[7] |
H. Q. Dinh,
Structure of repeated-root constacyclic codes of length 3ps and their duals, Discrete Math., 313 (2013), 983-991.
doi: 10.1016/j.disc.2013.01.024. |
[8] |
H. Q. Dinh,
Structure of repeated-root cyclic and negacyclic codes of length 6ps and their duals, Contemp. Math., 609 (2014), 69-87.
doi: 10.1090/conm/609/12150. |
[9] |
H. Q. Dinh and Sa roj Rani,
Structure of some classes of repeated-root constacyclic codes of length 2klmpn, Discrete Math., 342 (2019), 111609.
doi: 10.1016/j.disc.2019.111609. |
[10] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[11] |
L. Liu, L. Li, X. Kai and S. Zhu,
Repeated-root constacyclic codes of length 3lps and their dual codes, Finite Fields Appl., 42 (2016), 269-295.
doi: 10.1016/j.ffa.2016.08.005. |
[12] |
Y. Liu, M. Shi, H. Q. Dinh and S. Sriboonchitta,
Repeated-root constacyclic codes of length 3lmps, Advances in Math. Comm., 14 (2020), 359-378.
doi: 10.1017/CBO9780511807077. |
[13] |
S. Rani, Structure of repeated-root constacyclic codes of length 8lmpn, Asian-Eur. J. Math., 12(2019), 1950050, 17 pp.
doi: 10.1016/j.ffa.2016.08.005. |
[14] |
A. Sharma,
Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field, Discrete Math., 338 (2015), 576-592.
doi: 10.1016/j.disc.2014.11.008. |
[15] |
A. Sharma,
Repeated-root constacyclic codes of length ltp^s and their dual codes, Cryptogr. Commun., 7 (2015), 229-255.
doi: 10.1007/s12095-014-0106-5. |
[16] |
A. Sharma and S. Rani,
Repeated-root constacyclic codes of length 4lmpn, Finite Fields Appl., 40 (2016), 163-200.
doi: 10.1016/j.ffa.2016.04.001. |
[17] |
Z. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing, Singapore, 2003.
doi: 10.1142/5350. |
[18] |
T. Wu, L. Liu, L. Li and S. Zhu,
Repeated-root constacyclic codes of length 6lps and their dual codes, Advances in Math., 15 (2021), 167-189.
|
[19] |
W. Zhao, X. Tang and Z. Gu,
Constacyclic codes of length klmpn over a finite field, Finite Fields Appl., 52 (2018), 51-66.
doi: 10.1016/j.ffa.2018.03.004. |
q | l | m | length | dimension | minimum distance |
5 | 7 | 2 | 1470 | 1460 | 2 |
5 | 7 | 2 | 1470 | 1050 | 6 |
5 | 7 | 2 | 1470 | 60 | 84 |
5 | 17 | 1 | 510 | 190 | 17 |
5 | 19 | 1 | 570 | 110 | 38 |
13 | 5 | 2 | 1950 | 1404 | 5 |
13 | 5 | 2 | 1950 | 858 | 10 |
13 | 5 | 2 | 1950 | 26 | 125 |
25 | 11 | 1 | 330 | 320 | 2 |
25 | 11 | 1 | 330 | 260 | 6 |
25 | 11 | 1 | 330 | 120 | 14 |
q | l | m | length | dimension | minimum distance |
5 | 7 | 2 | 1470 | 1460 | 2 |
5 | 7 | 2 | 1470 | 1050 | 6 |
5 | 7 | 2 | 1470 | 60 | 84 |
5 | 17 | 1 | 510 | 190 | 17 |
5 | 19 | 1 | 570 | 110 | 38 |
13 | 5 | 2 | 1950 | 1404 | 5 |
13 | 5 | 2 | 1950 | 858 | 10 |
13 | 5 | 2 | 1950 | 26 | 125 |
25 | 11 | 1 | 330 | 320 | 2 |
25 | 11 | 1 | 330 | 260 | 6 |
25 | 11 | 1 | 330 | 120 | 14 |
q | l | length | dimension | minimum distance |
7 | 11 | 462 | 224 | 13 |
7 | 11 | 462 | 154 | 18 |
7 | 13 | 546 | 364 | 6 |
7 | 13 | 546 | 196 | 17 |
7 | 13 | 546 | 168 | 22 |
7 | 31 | 1302 | 1288 | 2 |
7 | 31 | 1302 | 14 | 93 |
11 | 19 | 1254 | 1078 | 6 |
11 | 19 | 1254 | 308 | 24 |
11 | 19 | 1254 | 154 | 55 |
q | l | length | dimension | minimum distance |
7 | 11 | 462 | 224 | 13 |
7 | 11 | 462 | 154 | 18 |
7 | 13 | 546 | 364 | 6 |
7 | 13 | 546 | 196 | 17 |
7 | 13 | 546 | 168 | 22 |
7 | 31 | 1302 | 1288 | 2 |
7 | 31 | 1302 | 14 | 93 |
11 | 19 | 1254 | 1078 | 6 |
11 | 19 | 1254 | 308 | 24 |
11 | 19 | 1254 | 154 | 55 |
q | l | m | length | dimension | minimum distance |
13 | 5 | 2 | 1950 | 975 | 6 |
5 | 7 | 2 | 1470 | 735 | 8 |
5 | 11 | 1 | 330 | 165 | 8 |
5 | 17 | 1 | 510 | 255 | 8 |
5 | 19 | 1 | 570 | 285 | 8 |
5 | 23 | 1 | 690 | 345 | 8 |
q | l | m | length | dimension | minimum distance |
13 | 5 | 2 | 1950 | 975 | 6 |
5 | 7 | 2 | 1470 | 735 | 8 |
5 | 11 | 1 | 330 | 165 | 8 |
5 | 17 | 1 | 510 | 255 | 8 |
5 | 19 | 1 | 570 | 285 | 8 |
5 | 23 | 1 | 690 | 345 | 8 |
[1] |
Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039 |
[2] |
Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021070 |
[3] |
Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045 |
[4] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[5] |
Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031 |
[6] |
Ranya Djihad Boulanouar, Aicha Batoul, Delphine Boucher. An overview on skew constacyclic codes and their subclass of LCD codes. Advances in Mathematics of Communications, 2021, 15 (4) : 611-632. doi: 10.3934/amc.2020085 |
[7] |
Steven Dougherty, Adrian Korban, Serap Șahinkaya, Deniz Ustun. Binary self-dual and LCD codes from generator matrices constructed from two group ring elements by a heuristic search scheme. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022036 |
[8] |
Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437 |
[9] |
Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229 |
[10] |
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267 |
[11] |
Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047 |
[12] |
Somphong Jitman, Supawadee Prugsapitak, Madhu Raka. Some generalizations of good integers and their applications in the study of self-dual negacyclic codes. Advances in Mathematics of Communications, 2020, 14 (1) : 35-51. doi: 10.3934/amc.2020004 |
[13] |
Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023 |
[14] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[15] |
Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251 |
[16] |
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433 |
[17] |
Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23 |
[18] |
Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393 |
[19] |
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 |
[20] |
Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]