\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Repeated-root constacyclic codes of length 6lmpn

  • * Corresponding author: Li Liu

    * Corresponding author: Li Liu 

This research is supported in part by the National Natural Science Foundation of China under Project 61772168, 12001002, the fundamental Research Funds for the Central Universities under Project PA2021KCPY0040 and the Natural Science Foundation of Anhui Province under Project 2108085QA06, 2008085QA04, 2108085QA03

Abstract Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • Let $ \mathbb{F}_{q} $ be a finite field with character $ p $. In this paper, the multiplicative group $ \mathbb{F}_{q}^{*} = \mathbb{F}_{q}\setminus\{0\} $ is decomposed into a mutually disjoint union of $ \gcd(6l^mp^n,q-1) $ cosets over subgroup $ <\xi^{6l^mp^n}> $, where $ \xi $ is a primitive element of $ \mathbb{F}_{q} $. Based on the decomposition, the structure of constacyclic codes of length $ 6l^mp^n $ over finite field $ \mathbb{F}_{q} $ and their duals is established in terms of their generator polynomials, where $ p\neq{3} $ and $ l\neq{3} $ are distinct odd primes, $ m $ and $ n $ are positive integers. In addition, we determine the characterization and enumeration of all linear complementary dual(LCD) negacyclic codes and self-dual constacyclic codes of length $ 6l^mp^n $ over $ \mathbb{F}_{q} $.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  LCD negacyclic codes1

    q l m length dimension minimum distance
    5 7 2 1470 1460 2
    5 7 2 1470 1050 6
    5 7 2 1470 60 84
    5 17 1 510 190 17
    5 19 1 570 110 38
    13 5 2 1950 1404 5
    13 5 2 1950 858 10
    13 5 2 1950 26 125
    25 11 1 330 320 2
    25 11 1 330 260 6
    25 11 1 330 120 14
     | Show Table
    DownLoad: CSV

    Table 2.  LCD negacyclic codes2

    q l length dimension minimum distance
    7 11 462 224 13
    7 11 462 154 18
    7 13 546 364 6
    7 13 546 196 17
    7 13 546 168 22
    7 31 1302 1288 2
    7 31 1302 14 93
    11 19 1254 1078 6
    11 19 1254 308 24
    11 19 1254 154 55
     | Show Table
    DownLoad: CSV

    Table 3.  self-dual negacyclic codes

    q l m length dimension minimum distance
    13 5 2 1950 975 6
    5 7 2 1470 735 8
    5 11 1 330 165 8
    5 17 1 510 255 8
    5 19 1 570 285 8
    5 23 1 690 345 8
     | Show Table
    DownLoad: CSV
  • [1] G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.
    [2] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York, 1968.
    [3] B. ChenH. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length lps and their duals, Discrete Appl. Math., 177 (2014), 60-70.  doi: 10.1016/j.dam.2014.05.046.
    [4] B. ChenH. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length 2lmpn, Finite Fields Appl., 33 (2015), 137-159.  doi: 10.1016/j.ffa.2014.11.006.
    [5] B. ChenH. Liu and G. Zhang, A class of minimal cyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 285-300.  doi: 10.1007/s10623-013-9857-9.
    [6] H. Q. Dinh, Repeated-root constacyclic codes of length 2ps, Finite Fields Appl., 18 (2012), 133-143.  doi: 10.1016/j.ffa.2011.07.003.
    [7] H. Q. Dinh, Structure of repeated-root constacyclic codes of length 3ps and their duals, Discrete Math., 313 (2013), 983-991.  doi: 10.1016/j.disc.2013.01.024.
    [8] H. Q. Dinh, Structure of repeated-root cyclic and negacyclic codes of length 6ps and their duals, Contemp. Math., 609 (2014), 69-87.  doi: 10.1090/conm/609/12150.
    [9] H. Q. Dinh and Sa roj Rani, Structure of some classes of repeated-root constacyclic codes of length 2klmpn, Discrete Math., 342 (2019), 111609.  doi: 10.1016/j.disc.2019.111609.
    [10] W. C. Huffman and  V. PlessFundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
    [11] L. LiuL. LiX. Kai and S. Zhu, Repeated-root constacyclic codes of length 3lps and their dual codes, Finite Fields Appl., 42 (2016), 269-295.  doi: 10.1016/j.ffa.2016.08.005.
    [12] Y. LiuM. ShiH. Q. Dinh and S. Sriboonchitta, Repeated-root constacyclic codes of length 3lmps, Advances in Math. Comm., 14 (2020), 359-378.  doi: 10.1017/CBO9780511807077.
    [13] S. Rani, Structure of repeated-root constacyclic codes of length 8lmpn, Asian-Eur. J. Math., 12(2019), 1950050, 17 pp. doi: 10.1016/j.ffa.2016.08.005.
    [14] A. Sharma, Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field, Discrete Math., 338 (2015), 576-592.  doi: 10.1016/j.disc.2014.11.008.
    [15] A. Sharma, Repeated-root constacyclic codes of length ltp^s and their dual codes, Cryptogr. Commun., 7 (2015), 229-255.  doi: 10.1007/s12095-014-0106-5.
    [16] A. Sharma and S. Rani, Repeated-root constacyclic codes of length 4lmpn, Finite Fields Appl., 40 (2016), 163-200.  doi: 10.1016/j.ffa.2016.04.001.
    [17] Z. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing, Singapore, 2003. doi: 10.1142/5350.
    [18] T. WuL. LiuL. Li and S. Zhu, Repeated-root constacyclic codes of length 6lps and their dual codes, Advances in Math., 15 (2021), 167-189. 
    [19] W. ZhaoX. Tang and Z. Gu, Constacyclic codes of length klmpn over a finite field, Finite Fields Appl., 52 (2018), 51-66.  doi: 10.1016/j.ffa.2018.03.004.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(1084) PDF downloads(599) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return