doi: 10.3934/amc.2021046
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions

1. 

School of Mathematical Sciences, Anhui University, Hefei 230601, China

2. 

I2M, (CNRS, Aix-Marseille University, Centrale Marseille), Marseilles, France

* Corresponding author: Huazhang Wu

Received  March 2021 Revised  July 2021 Early access October 2021

Fund Project: The research is supported by the Open Fund Research of Fund of Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University

This paper mainly study $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes. A Gray map from $ \mathbb{Z}_{2}^{\alpha}\times\mathbb{Z}_{4}^{\beta}[u] $ to $ \mathbb{Z}_{4}^{\alpha+2\beta} $ is defined, and we prove that is a weight preserving and distance preserving map. A MacWilliams-type identity between the Lee weight enumerator of a $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive code and its dual is proved. Some properties of one-weight $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes and two-weight projective $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes are discussed. As main results, some construction methods for one-weight and two-weight $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes are studied, meanwhile several examples are presented to illustrate the methods.

Citation: Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, doi: 10.3934/amc.2021046
References:
[1]

T. AbualrubI. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.  Google Scholar

[2]

I. AydogduT. Abualrub and I. Siap, On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.  Google Scholar

[3]

I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_{2}\mathbb{Z}_{2^{s}}$-additive codes: Bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.  doi: 10.12785/amis/070617.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.   Google Scholar

[5]

J. BorgesC. Fernández-CárdobaJ. PujólJ. Rifà and M. Villanueva, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes: Generator matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.  doi: 10.1007/s10623-009-9316-9.  Google Scholar

[6]

J. BorgesC. Fernández-Cárdoba and R. Ten-Valls, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Info. Theory, 62 (2016), 6348-6354.  doi: 10.1109/TIT.2016.2611528.  Google Scholar

[7]

I. BouyulievV. FackW. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78.  doi: 10.1007/s10623-006-0019-1.  Google Scholar

[8]

A. E. Brouwer, Some new two-weight codes and strongly regular graphs, Discrete Appl. Math., 10 (1985), 111-114.  doi: 10.1016/0166-218X(85)90062-9.  Google Scholar

[9]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.  Google Scholar

[10]

C. Carlet, One-weight $\mathbb{Z}_{4}$-linear codes, Springer Berlin, (2000), 57–72.  Google Scholar

[11]

F. D. Clerck and M. Delanote, Two-weight codes, partial geometries and Steiner systems, Des. Codes Cryptogr., 21 (2000), 87-98.  doi: 10.1023/A:1008383510488.  Google Scholar

[12]

P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep., Supplement, 1973.  Google Scholar

[13]

A. R. HammonsP. V. KumarA. R. CalderbankN. Sloane and P. Solé, The $\mathbb{Z}_{4}$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[14]

H. RifàJ. Rifà and L. Ronquilloy, Perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, Comput. Res. Reposit, 26 (2010), 696-701.   Google Scholar

[15]

J. Rifà and L. Ronquillo, Product perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, International Symposium on Information Theory & Its Applications, (2010), 17–20. Google Scholar

[16]

M. SariV. Siap and I. Siap, One-homogeneous weight codes over finite chain rings, Bull. Korean Math. Soc., 52 (2015), 2011-2023.  doi: 10.4134/BKMS.2015.52.6.2011.  Google Scholar

[17]

M. J. ShiC. C. WangR. S. WuY. Hu and Y. Q. Chang, One-weight and two-weight $\mathbb{Z}_{2}\mathbb{Z}_{2}[u, v]$-additive codes, Cryptogr. Commun., 12 (2020), 443-454.  doi: 10.1007/s12095-019-00391-5.  Google Scholar

[18]

M. J. ShiL. L. Xu and G. Yang, A note on one weight and two weight projective $\mathbb{Z}_{4}$-codes, IEEE Trans. Inf. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.  Google Scholar

[19]

Z. X. Wan, Quaternary Codes, Singapore, World Scientific, 1997. doi: 10.1142/3603.  Google Scholar

[20]

J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc., 354 (2002), 1007-1026.  doi: 10.1090/S0002-9947-01-02905-1.  Google Scholar

show all references

References:
[1]

T. AbualrubI. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.  Google Scholar

[2]

I. AydogduT. Abualrub and I. Siap, On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.  Google Scholar

[3]

I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_{2}\mathbb{Z}_{2^{s}}$-additive codes: Bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.  doi: 10.12785/amis/070617.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.   Google Scholar

[5]

J. BorgesC. Fernández-CárdobaJ. PujólJ. Rifà and M. Villanueva, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes: Generator matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.  doi: 10.1007/s10623-009-9316-9.  Google Scholar

[6]

J. BorgesC. Fernández-Cárdoba and R. Ten-Valls, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Info. Theory, 62 (2016), 6348-6354.  doi: 10.1109/TIT.2016.2611528.  Google Scholar

[7]

I. BouyulievV. FackW. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78.  doi: 10.1007/s10623-006-0019-1.  Google Scholar

[8]

A. E. Brouwer, Some new two-weight codes and strongly regular graphs, Discrete Appl. Math., 10 (1985), 111-114.  doi: 10.1016/0166-218X(85)90062-9.  Google Scholar

[9]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.  Google Scholar

[10]

C. Carlet, One-weight $\mathbb{Z}_{4}$-linear codes, Springer Berlin, (2000), 57–72.  Google Scholar

[11]

F. D. Clerck and M. Delanote, Two-weight codes, partial geometries and Steiner systems, Des. Codes Cryptogr., 21 (2000), 87-98.  doi: 10.1023/A:1008383510488.  Google Scholar

[12]

P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep., Supplement, 1973.  Google Scholar

[13]

A. R. HammonsP. V. KumarA. R. CalderbankN. Sloane and P. Solé, The $\mathbb{Z}_{4}$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[14]

H. RifàJ. Rifà and L. Ronquilloy, Perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, Comput. Res. Reposit, 26 (2010), 696-701.   Google Scholar

[15]

J. Rifà and L. Ronquillo, Product perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, International Symposium on Information Theory & Its Applications, (2010), 17–20. Google Scholar

[16]

M. SariV. Siap and I. Siap, One-homogeneous weight codes over finite chain rings, Bull. Korean Math. Soc., 52 (2015), 2011-2023.  doi: 10.4134/BKMS.2015.52.6.2011.  Google Scholar

[17]

M. J. ShiC. C. WangR. S. WuY. Hu and Y. Q. Chang, One-weight and two-weight $\mathbb{Z}_{2}\mathbb{Z}_{2}[u, v]$-additive codes, Cryptogr. Commun., 12 (2020), 443-454.  doi: 10.1007/s12095-019-00391-5.  Google Scholar

[18]

M. J. ShiL. L. Xu and G. Yang, A note on one weight and two weight projective $\mathbb{Z}_{4}$-codes, IEEE Trans. Inf. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.  Google Scholar

[19]

Z. X. Wan, Quaternary Codes, Singapore, World Scientific, 1997. doi: 10.1142/3603.  Google Scholar

[20]

J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc., 354 (2002), 1007-1026.  doi: 10.1090/S0002-9947-01-02905-1.  Google Scholar

Table 1.  One-weight $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes
Cases Weight Remark
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0 $ $ 8k_{1} $ $ a+4a_{7}=2k_{1} $
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L} ((2+u)\mathbf{c})=0 $ $ 4k_{3} $ $ a+4a_{7}=2k_{3} $
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0 $ $ 4k_{2} $ $ a+4a_{7}=2k_{2} $
$ w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0 $ $ 4k_{1} $ $ a+4a_{7}=2k_{1} $
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})=0 $ / /
$ w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L} ((2 +u)\mathbf{c})=0 $ / /
$ w_{L}(\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=0 $ / /
$ w_{L}(\mathbf{c})\neq0,w_{L} ((2 +u)\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})=0 $ $ a+4a_{7} $ /
Cases Weight Remark
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0 $ $ 8k_{1} $ $ a+4a_{7}=2k_{1} $
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L} ((2+u)\mathbf{c})=0 $ $ 4k_{3} $ $ a+4a_{7}=2k_{3} $
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0 $ $ 4k_{2} $ $ a+4a_{7}=2k_{2} $
$ w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0 $ $ 4k_{1} $ $ a+4a_{7}=2k_{1} $
$ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})=0 $ / /
$ w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L} ((2 +u)\mathbf{c})=0 $ / /
$ w_{L}(\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=0 $ / /
$ w_{L}(\mathbf{c})\neq0,w_{L} ((2 +u)\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})=0 $ $ a+4a_{7} $ /
Table 2.  Two-weight $\mathbb{Z}_{2}\mathbb{Z}_{4}[u]$-additive codes
Cases $m_{1}$ $m_{2}$ Remark
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{3})$ $8k_{1}$ $a=2k_{3}-4a_{7},k_{1}\neq k_{3}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{1}$ $a=2k_{2}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{2}$ $a=2k_{1}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0$ $a+6k_{1}+4a_{7}$ $8k_{1}$ $a+4a_{7}\neq2k_{1}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{2}$ $a=4k_{2}-2k_{1}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{1}$ $a=4k_{1}-2k_{2}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})\neq0$ $4(k_{1}+k_{3})$ $8k_{1}$ $a=4k_{1}-2k_{3}-4a_{7},k_{1}\neq k_{3}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ $a+2k_{3}+4a_{7}$ $4k_{3}$ $a+4a_{7}\neq2k_{3}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ / / /
$w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ $a+2k_{2}+4a_{7}$ $4k_{2}$ $a+4a_{7}\neq2k_{2}$
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ / / /
$w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ $a+2k_{1}+4a_{7}$ $4k_{1}$ $a+4a_{7}\neq2k_{1}$
$w_{L}(\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})=0$ / / /
Cases $m_{1}$ $m_{2}$ Remark
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{3})$ $8k_{1}$ $a=2k_{3}-4a_{7},k_{1}\neq k_{3}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{1}$ $a=2k_{2}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{2}$ $a=2k_{1}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0$ $a+6k_{1}+4a_{7}$ $8k_{1}$ $a+4a_{7}\neq2k_{1}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{2}$ $a=4k_{2}-2k_{1}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{1}$ $a=4k_{1}-2k_{2}-4a_{7},k_{1}\neq k_{2}$
$w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})\neq0$ $4(k_{1}+k_{3})$ $8k_{1}$ $a=4k_{1}-2k_{3}-4a_{7},k_{1}\neq k_{3}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ $a+2k_{3}+4a_{7}$ $4k_{3}$ $a+4a_{7}\neq2k_{3}$
$w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ / / /
$w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ $a+2k_{2}+4a_{7}$ $4k_{2}$ $a+4a_{7}\neq2k_{2}$
$w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ / / /
$w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ $a+2k_{1}+4a_{7}$ $4k_{1}$ $a+4a_{7}\neq2k_{1}$
$w_{L}(\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})=0$ / / /
$w_{L}(\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})=0$ / / /
Table 3.  Code parameters comparison
Examples Length of $\Phi(\mathcal{C})$ Size of $\Phi(\mathcal{C})$ Lee weight of $\Phi(\mathcal{C})$ Lee weight in Database in http://www.Z4codes.info/ Remark
Ex. 5.3 (i) 8 4 8 8/10 As good as in Database
Ex. 5.3 (ii) 10 2 12 / New value
Ex. 5.5 (i) 32 4 32 32/42 As good as in Database
Ex. 5.5 (ii) 30 4 32 30/40 Better than Database
Ex. 5.5 (iii) 62 4 64 82
Ex. 5.7 36 8 32 / New value
Ex. 6.2 (i) 9 4 6 and 12 9/12 Optimal as per Database
Ex. 6.2 (ii) 16 4 8 and 16 16/21 Optimal as per Database
Ex. 6.4 (i) 18 4 16 and 20 18/24 Improves on Database
Ex. 6.4 (ii) 11 4 12 and 13 11/14 Improves on Database
Ex. 6.6 46 8 36 and 48 / New value
Examples Length of $\Phi(\mathcal{C})$ Size of $\Phi(\mathcal{C})$ Lee weight of $\Phi(\mathcal{C})$ Lee weight in Database in http://www.Z4codes.info/ Remark
Ex. 5.3 (i) 8 4 8 8/10 As good as in Database
Ex. 5.3 (ii) 10 2 12 / New value
Ex. 5.5 (i) 32 4 32 32/42 As good as in Database
Ex. 5.5 (ii) 30 4 32 30/40 Better than Database
Ex. 5.5 (iii) 62 4 64 82
Ex. 5.7 36 8 32 / New value
Ex. 6.2 (i) 9 4 6 and 12 9/12 Optimal as per Database
Ex. 6.2 (ii) 16 4 8 and 16 16/21 Optimal as per Database
Ex. 6.4 (i) 18 4 16 and 20 18/24 Improves on Database
Ex. 6.4 (ii) 11 4 12 and 13 11/14 Improves on Database
Ex. 6.6 46 8 36 and 48 / New value
[1]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[2]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[3]

Liz Lane-Harvard, Tim Penttila. Some new two-weight ternary and quinary codes of lengths six and twelve. Advances in Mathematics of Communications, 2016, 10 (4) : 847-850. doi: 10.3934/amc.2016044

[4]

Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038

[5]

Murat Şahİn, Hayrullah Özİmamoğlu. Additive Toeplitz codes over $ \mathbb{F}_{4} $. Advances in Mathematics of Communications, 2020, 14 (2) : 379-395. doi: 10.3934/amc.2020026

[6]

Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029

[7]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[8]

Taher Abualrub, Steven T. Dougherty. Additive and linear conjucyclic codes over $ {\mathbb{F}}_4 $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020096

[9]

Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094

[10]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[11]

Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2020, 14 (2) : 233-245. doi: 10.3934/amc.2020017

[12]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[13]

Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021056

[14]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[15]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[16]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[17]

Kailu Yang, Xiaomiao Wang, Menglong Zhang, Lidong Wang. Some progress on optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021012

[18]

Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020097

[19]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[20]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (68)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]