doi: 10.3934/amc.2021049
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A survey on functional encryption

University of Trento, Via Sommarive 14, Povo, Trento, Italy

* Corresponding author: Irene Villa

Received  June 2021 Revised  August 2021 Early access October 2021

Fund Project: The third author is supported by BV TECH Spa under the project "Algebraic methods for Cloud Encryption"

Functional Encryption (FE) expands traditional public-key encryption in two different ways: it supports fine-grained access control and allows learning a function of the encrypted data. In this paper, we review all FE classes, describing their functionalities and main characteristics. In particular, we mention several schemes for each class, providing their security assumptions and comparing their properties. To our knowledge, this is the first survey that encompasses the entire FE family.

Citation: Carla Mascia, Massimiliano Sala, Irene Villa. A survey on functional encryption. Advances in Mathematics of Communications, doi: 10.3934/amc.2021049
References:
[1]

M. AbdallaF. BenhamoudaM. Kohlweiss and H. Waldner, Decentralizing inner-product functional encryption, IACR International Workshop on Public Key Cryptography, 11443 (2019), 128-157.  doi: 10.1007/978-3-030-17259-6_5.  Google Scholar

[2]

M. AbdallaF. BourseA. D. Caro and D. Pointcheval, Simple functional encryption schemes for inner products, IACR International Workshop on Public Key Cryptography, 9020 (2015), 733-751.  doi: 10.1007/978-3-662-46447-2_33.  Google Scholar

[3]

M. AbdallaF. BourseH. MarivalD. PointchevalA. Soleimanian and H. Waldner, Multi-client inner-product functional encryption in the random-oracle model, International Conference on Security and Cryptography for Networks, 12238 (2020), 525-545.  doi: 10.1007/978-3-030-57990-6_26.  Google Scholar

[4]

M. AbdallaD. CatalanoD. FioreR. Gay and B. Ursu, Multi-input functional encryption for inner products: Function-hiding realizations and constructions without pairings, Annual International Cryptology Conference, 10991 (2018), 597-627.  doi: 10.1007/978-3-319-96884-1_20.  Google Scholar

[5]

M. AbdallaA. W. DentJ. Malone-LeeG. NevenD. Hieu Phan and N. P Smart, Identity-based traitor tracing, International Workshop on Public Key Cryptography, 4450 (2007), 361-376.  doi: 10.1007/978-3-540-71677-8_24.  Google Scholar

[6]

M. AbdallaR. GayM. Raykova and H. Wee, Multi-input inner-product functional encryption from pairings, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 10210 (2017), 601-626.  doi: 10.1007/978-3-319-56620-7_21.  Google Scholar

[7]

S. AgrawalS. AgrawalS. BadrinarayananA. KumarasubramanianM. Prabhakaran and A. Sahai, On the practical security of inner product functional encryption, IACR International Workshop on Public Key Cryptography, 9020 (2015), 777-798.  doi: 10.1007/978-3-662-46447-2_35.  Google Scholar

[8]

S. Agrawal, Stronger security for reusable garbled circuits, general definitions and attacks, Annual International Cryptology Conference, 10401 (2017), 3-35.  doi: 10.1007/978-3-319-63688-7_1.  Google Scholar

[9]

S. AgrawalD. Boneh and X. Boyen, Efficient lattice (H) IBE in the standard model, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6110 (2010), 553-572.  doi: 10.1007/978-3-642-13190-5_28.  Google Scholar

[10]

S. Agrawal, M. Clear, O. Frieder, S. Garg, A. O'Neill and J. Thaler, Ad hoc multi-input functional encryption, In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 151 (2020), 1–41. Google Scholar

[11]

S. AgrawalD. M. Freeman and V. Vaikuntanathan, Functional encryption for inner product predicates from learning with errors, International Conference on the Theory and Application of Cryptology and Information Security, 7073 (2011), 21-40.  doi: 10.1007/978-3-642-25385-0_2.  Google Scholar

[12]

S. AgrawalS. GorbunovV. Vaikuntanathan and H. Wee, Functional encryption: New perspectives and lower bounds, Annual Cryptology Conference, 8043 (2013), 500-518.  doi: 10.1007/978-3-642-40084-1_28.  Google Scholar

[13]

S. Agrawal, R. Goyal and J. Tomida, Multi-Input Quadratic Functional Encryption From Pairings, Cryptology ePrint Archive, Report 2020/1285, 2020, https://eprint.iacr.org/2020/1285. Google Scholar

[14]

S. Agrawal, R. Goyal and J. Tomida, Multi-Party Functional Encryption, Cryptology ePrint Archive, Report 2020/1266, 2020, https://eprint.iacr.org/2020/1266. Google Scholar

[15]

S. Agrawal, B. Libert, M. Maitra and R. Titiu, Adaptive simulation security for inner product functional encryption, In IACR International Conference on Public-Key Cryptography, Springer, Cham, 12110 (2020), 34–64. doi: 10.1007/978-3-030-45374-9_2.  Google Scholar

[16]

S. AgrawalB. Libert and D. Stehlé, Fully secure functional encryption for inner products, from standard assumptions, Annual International Cryptology Conference, 9816 (2016), 333-362.  doi: 10.1007/978-3-662-53015-3_12.  Google Scholar

[17]

R. R. Al-Dahhan, Q. Shi, G. Myoung Lee and K. Kifayat, Survey on revocation in ciphertext-policy attribute-based encryption, Sensors, 19 (2019). doi: 10.3390/s19071695.  Google Scholar

[18]

J. AlwenM. BarbosaP. FarshimR. GennaroS. GordonS. Tessaro and D. A. Wilson, On the relationship between functional encryption, obfuscation, and fully homomorphic encryption, IMA International Conference on Cryptography and Coding, 8308 (2013), 65-84.  doi: 10.1007/978-3-642-45239-0_5.  Google Scholar

[19]

M. AmbronaD. Fiore and C. Soriente, Controlled functional encryption revisited: Multi-authority extensions and efficient schemes for quadratic functions, Proceedings on Privacy Enhancing Technologies, 2021 (2021), 21-42.   Google Scholar

[20]

P. Ananth, D. Boneh, S. Garg, A. Sahai and M. Zhandry, Differing-Inputs Obfuscation and Applications, Cryptology ePrint Archive, Report 2013/689, 2013, https://eprint.iacr.org/2013/689. Google Scholar

[21]

P. AnanthZ. BrakerskiG. Segev and V. Vaikuntanathan, From Selective to Adaptive Security in Functional Encryption, Annual Cryptology Conference, 9216 (2015), 657-677.  doi: 10.1007/978-3-662-48000-7_32.  Google Scholar

[22]

P. Ananth and A. Sahai, Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 10210 (2017), 152-181.  doi: 10.1007/978-3-319-56620-7.  Google Scholar

[23]

N. AttrapadungJ. HerranzF. LaguillaumieB. LibertE. De Panafieu and C. Ràfols, Attribute-based encryption schemes with constant-size ciphertexts, Theoret. Comput. Sci., 422 (2012), 15-38.  doi: 10.1016/j.tcs.2011.12.004.  Google Scholar

[24]

M. AuQ. HuangJ. K. LiuW. SusiloD. S. Wong and G. Yang, Traceable and retrievable identity-based encryption, International Conference on Applied Cryptography and Network Security, 5037 (2008), 94-110.  doi: 10.1007/978-3-540-68914-0_6.  Google Scholar

[25]

S. BadrinarayananV. GoyalA. Jain and A. Sahai, Verifiable functional encryption, International Conference on the Theory and Application of Cryptology and Information Security, 10032 (2016), 557-587.  doi: 10.1007/978-3-662-53890-6_19.  Google Scholar

[26]

C. E. Z. BalticoD. CatalanoD. Fiore and R. Gay, Practical functional encryption for quadratic functions with applications to predicate encryption, Annual International Cryptology Conference, 10401 (2017), 67-98.  doi: 10.1007/978-3-319-63688-7_3.  Google Scholar

[27]

M. BarbosaD. CatalanoA. Soleimanian and B. Warinschi, Efficient function-hiding functional encryption: From inner-products to orthogonality, Cryptographers' Track at the RSA Conference, 11405 (2019), 127-148.  doi: 10.1007/978-3-030-12612-4_7.  Google Scholar

[28]

J. BartusekB. CarmerA. JainZ. JinT. LepointF. MaT. MalkinA. J. Malozemoff and M. Raykova, Public-key function-private hidden vector encryption (and more), International Conference on the Theory and Application of Cryptology and Information Security, 11923 (2019), 489-519.  doi: 10.1007/978-3-030-34618-8_17.  Google Scholar

[29]

M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, In Proceedings of the 1st ACM Conference on Computer and Communications Security, (1993), 62–73. doi: 10.1145/168588.168596.  Google Scholar

[30]

F. BenhamoudaF. Bourse and H. Lipmaa, CCA-secure inner-product functional encryption from projective hash functions, IACR International Workshop on Public Key Cryptography, 10175 (2017), 36-66.  doi: 10.1007/978-3-662-54388-7_2.  Google Scholar

[31]

J. Bethencourt, A. Sahai and B. Waters, Ciphertext-policy attribute-based encryption, In 2007 IEEE Symposium on Security and Privacy (SP'07), (2007), 321–334. doi: 10.1109/SP.2007.11.  Google Scholar

[32]

A. BishopA. Jain and L. Kowalczyk, Function-hiding inner product encryption, International Conference on the Theory and Application of Cryptology and Information Security, 9452 (2015), 470-491.  doi: 10.1007/978-3-662-48797-6_20.  Google Scholar

[33]

I. F. BlakeV. K. Murty and G. Xu, Refinements of Miller's algorithm for computing the Weil/Tate pairing, J. Algorithms, 58 (2006), 134-149.  doi: 10.1016/j.jalgor.2005.01.009.  Google Scholar

[34]

O. Blazy, L. Brouilhet and D. H. Phan, Anonymous identity based encryption with traceable identities, InProceedings of the 14th International Conference on Availability, Reliability and Security, (2019), 1–10. doi: 10.1145/3339252.3339271.  Google Scholar

[35]

D. Boneh and X. Boyen, Efficient selective-ID secure identity-based encryption without random oracles, International Conference on the Theory and Applications of Cryptographic Techniques, 3027 (2004), 223-238.  doi: 10.1007/978-3-540-24676-3_14.  Google Scholar

[36]

D. Boneh and X. Boyen, Secure identity based encryption without random oracles, Annual International Cryptology Conference, 3152 (2004), 443-459.  doi: 10.1007/978-3-540-28628-8_27.  Google Scholar

[37]

D. BonehX. Boyen and E.-J. Goh, Hierarchical identity based encryption with constant size ciphertext, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 3494 (2005), 440-456.  doi: 10.1007/11426639_26.  Google Scholar

[38]

D. BonehX. Boyen and H. Shacham, Short group signatures, Annual International Cryptology Conference, 3152 (2004), 41-55.  doi: 10.1007/978-3-540-28628-8_3.  Google Scholar

[39]

D. BonehG. D. CrescenzoR. Ostrovsky and G. Persiano, Public key encryption with keyword search, International Conference on the Theory and Applications of Cryptographic Techniques, 3027 (2004), 506-522.  doi: 10.1007/978-3-540-24676-3_30.  Google Scholar

[40]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Annual International Cryptology Conference, 2139 (2001), 213-229.  doi: 10.1007/3-540-44647-8_13.  Google Scholar

[41]

D. BonehC. GentryS. GorbunovS. HaleviV. NikolaenkoG. SegevV. Vaikuntanathan and D. Vinayagamurthy, Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 8441 (2014), 533-556.  doi: 10.1007/978-3-642-55220-5_30.  Google Scholar

[42]

D. Boneh, C. Gentry and M. Hamburg, Space-efficient identity based encryptionwithout pairings, In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), (2007), 647–657. doi: 10.1109/FOCS.2007.50.  Google Scholar

[43]

D. BonehK. LewiM. RaykovaA. SahaiM. Zhandry and J. Zimmerman, Semantically secure order-revealing encryption: Multi-input functional encryption without obfuscation, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 9057 (2015), 563-594.  doi: 10.1007/978-3-662-46803-6_19.  Google Scholar

[44]

D. BonehA. Raghunathan and G. Segev, Function-private identity-based encryption: Hiding the function in functional encryption, Annual Cryptology Conference, 8043 (2013), 461-478.  doi: 10.1007/978-3-642-40084-1_26.  Google Scholar

[45]

D. BonehA. Raghunathan and G. Segev, Function-private subspace-membership encryption and its applications, International Conference on the Theory and Application of Cryptology and Information Security, 8269 (2013), 255-275.  doi: 10.1007/978-3-642-42033-7_14.  Google Scholar

[46]

D. BonehA. Sahai and B. Waters, Fully collusion resistant traitor tracing with short ciphertexts and private keys, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 4004 (2006), 573-592.  doi: 10.1007/11761679_34.  Google Scholar

[47]

D. BonehA. Sahai and B. Waters, Functional encryption: Definitions and challenges, Theory of Cryptography Conference, 6597 (2011), 253-273.  doi: 10.1007/978-3-642-19571-6_16.  Google Scholar

[48]

D. BonehA. Sahai and B. Waters, Functional encryption: A new vision for public-key cryptography, Communications of the ACM, 55 (2012), 56-64.   Google Scholar

[49]

D. Boneh and A. Silverberg, Applications of multilinear forms to cryptography, Contemp. Math., 324 (2003), 71-90.   Google Scholar

[50]

D. Boneh and B. Waters, Conjunctive, subset, and range queries on encrypted data, Theory of Cryptography Conference, 4392 (2007), 535-554.  doi: 10.1007/978-3-540-70936-7_29.  Google Scholar

[51]

X. Boyen, Multipurpose identity-based signcryption: A Swiss Army knife for identity-based cryptography, Annual International Cryptology Conference, 2729 (2003), 383-399.  doi: 10.1007/978-3-540-45146-4_23.  Google Scholar

[52]

X. Boyen, A tapestry of identity-based encryption: Practical frameworks compared, Int. J. Appl. Cryptogr., 1 (2008), 3-21.  doi: 10.1504/IJACT.2008.017047.  Google Scholar

[53]

X. Boyen and B. Waters, Anonymous hierarchical identity-based encryption (without random oracles), Annual International Cryptology Conference, 4117 (2006), 290-307.  doi: 10.1007/11818175_17.  Google Scholar

[54]

Z. BrakerskiN. ChandranV. GoyalA. JainA. Sahai and G. Segev, Hierarchical functional encryption, Leibniz Int. Proc. Inform. (LIPIcs), 67 (2017), 1-27.   Google Scholar

[55]

Z. Brakerski and G. Segev, Function-private functional encryption in the private-key setting, J. Cryptology, 31 (2018), 202-225.  doi: 10.1007/s00145-017-9255-y.  Google Scholar

[56]

Z. Brakerski and V. Vaikuntanathan, Circuit-ABE from LWE: Unbounded attributes and semi-adaptive security, Annual International Cryptology Conference, 9816 (2016), 363-384.  doi: 10.1007/978-3-662-53015-3_13.  Google Scholar

[57]

J. CamenischM. KohlweissA. Rial and C. Sheedy, Blind and anonymous identity-based encryption and authorised private searches on public key encrypted data, International Workshop on Public Key Cryptography, 5443 (2009), 196-214.  doi: 10.1007/978-3-642-00468-1_12.  Google Scholar

[58]

R. CanettiS. Halevi and J. Katz, A forward-secure public-key encryption scheme, International Conference on the Theory and Applications of Cryptographic Techniques, 2656 (2003), 255-271.  doi: 10.1007/3-540-39200-9_16.  Google Scholar

[59]

D. CashD. HofheinzE. Kiltz and C. Peikert, Bonsai trees, or how to delegate a lattice basis, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6110 (2010), 523-552.  doi: 10.1007/978-3-642-13190-5_27.  Google Scholar

[60]

G. CastagnosF. Laguillaumie and I. Tucker, Practical fully secure unrestricted inner product functional encryption modulo $p$, International Conference on the Theory and Application of Cryptology and Information Security, 11273 (2018), 733-764.  doi: 10.1007/978-3-030-03329-3_25.  Google Scholar

[61]

M. Chase, Multi-authority attribute based encryption, Theory of Cryptography Conference, 4392 (2007), 515-534.  doi: 10.1007/978-3-540-70936-7_28.  Google Scholar

[62]

M. Chase and S. S. Chow, Improving privacy and security in multi-authority attribute-based encryption, In Proceedings of the 16th ACM Conference on Computer and Communications Security, (2009), 121–130. Google Scholar

[63]

S. Chatterjee and P. Sarkar, Trading time for space: Towards an efficient IBE scheme with short(er) public parameters in the standard model, International Conference on Information Security and Cryptology, 3935 (2005), 424-440.  doi: 10.1007/11734727_33.  Google Scholar

[64]

J. ChenJ. LingJ. Ning and J. Ding, Identity-based signature schemes for multivariate public key cryptosystems, Comput. J., 62 (2019), 1132-1147.  doi: 10.1093/comjnl/bxz013.  Google Scholar

[65]

J. ChenJ. GongL. Kowalczyk and H. Wee, Unbounded ABE via bilinear entropy expansion, revisited, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 10820 (2018), 503-534.  doi: 10.1007/978-3-319-78381-9_19.  Google Scholar

[66]

J. Chen and H. Wee, Fully, (almost) tightly secure IBE and dual system groups, Annual Cryptology Conference, 8043 (2013), 435-460.  doi: 10.1007/978-3-642-40084-1_25.  Google Scholar

[67]

J. H. CheonK. HanC. LeeH. Ryu and D. Stehlé, Cryptanalysis of the multilinear map over the integers, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 9056 (2015), 3-12.  doi: 10.1007/978-3-662-46800-5_1.  Google Scholar

[68]

J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan and D. Pointcheval, Dynamic decentralized functional encryption, In Annual International Cryptology Conference, 12170 (2020) 747–775. doi: 10.1007/978-3-030-56784-2_25.  Google Scholar

[69]

J. ChotardE. D. SansR. GayD. H. Phan and D. Pointcheval, Decentralized multi-client functional encryption for inner product, International Conference on the Theory and Application of Cryptology and Information Security, 11273 (2018), 703-732.  doi: 10.1007/978-3-030-03329-3_24.  Google Scholar

[70]

M. Ciampi, L. Siniscalchi and H. Waldner, Multi-client functional encryption for separable functions, In Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I, volume 12710 of Lecture Notes in Computer Science, pages 724–753. Springer, 2021. Google Scholar

[71]

C. Cocks, An identity based encryption scheme based on quadratic residues, IMA International Conference on Cryptography and Coding, 2260 (2001), 360-363.  doi: 10.1007/3-540-45325-3_32.  Google Scholar

[72]

J.-S. CoronT. Lepoint and M. Tibouchi, Practical multilinear maps over the integers, Annual Cryptology Conference, 8042 (2013), 476-493.  doi: 10.1007/978-3-642-40041-4_26.  Google Scholar

[73]

H. Cui, T. H. Yuen, R. H. Deng and G. Wang, Server-aided revocable attribute-based encryption for cloud computing services, Concurrency and Computation: Practice and Experience, 32 (2020). Google Scholar

[74]

R. M. DanielE. B. Rajsingh and S. Silas, Analysis of hierarchical identity based encryption schemes and its applicability to computing environments, J. Information Security and Applications, 36 (2017), 20-31.  doi: 10.1016/j.jisa.2017.07.005.  Google Scholar

[75]

P. DattaR. Dutta and S. Mukhopadhyay, Functional encryption for inner product with full function privacy, Public-Key Cryptography–PKC 2016, 9614 (2016), 164-195.  doi: 10.1007/978-3-662-49384-7_7.  Google Scholar

[76]

P. DattaR. Dutta and S. Mukhopadhyay, Strongly full-hiding inner product encryption, Theoret. Comput. Sci., 667 (2017), 16-50.  doi: 10.1016/j.tcs.2016.12.024.  Google Scholar

[77]

P. DattaT. Okamoto and J. Tomida, Full-hiding (unbounded) multi-input inner product functional encryption from the $k$-linear assumption, IACR International Workshop on Public Key Cryptography, 10770 (2018), 245-277.  doi: 10.1007/978-3-319-76581-5_9.  Google Scholar

[78]

A. D. CaroV. Iovino and G. Persiano, Fully secure hidden vector encryption, International Conference on Pairing-Based Cryptography, 7708 (2012), 102-121.  doi: 10.1007/978-3-642-36334-4_7.  Google Scholar

[79]

De Componendis Cifris, Functional Encryption, an overview - Carla Mascia, Irene Villa, https://www.youtube.com/watch?v=jz8v22jDlAs, https://www.decifris.it/cifrisCloud. Google Scholar

[80]

H. DengQ. WuB. QinJ. Domingo-FerrerL. ZhangJ. Liu and W. Shi, Ciphertext-policy hierarchical attribute-based encryption with short ciphertexts, Inform. Sci., 275 (2014), 370-384.  doi: 10.1016/j.ins.2014.01.035.  Google Scholar

[81]

X. T. DoD. H. Phan and D. Pointcheval, Traceable inner product functional encryption, Cryptographers' Track at the RSA Conference, 12006 (2020), 564-585.  doi: 10.1007/978-3-030-40186-3_24.  Google Scholar

[82]

E. Dufour-Sans and D. Pointcheval, Unbounded inner-product functional encryption with succinct keys, International Conference on Applied Cryptography and Network Security, 11464 (2019), 426-441.  doi: 10.1007/978-3-030-21568-2_21.  Google Scholar

[83]

A. EscalaG. HeroldE. KiltzC. Rafols and J. Villar, An algebraic framework for Diffie–Hellman assumptions, J. Cryptology, 30 (2017), 242-288.  doi: 10.1007/s00145-015-9220-6.  Google Scholar

[84]

C.-I. Fan and Y.-F. Tseng, Anonymous multi-receiver identity-based authenticated encryption with CCA security, Symmetry, 7 (2015), 1856-1881.  doi: 10.3390/sym7041856.  Google Scholar

[85]

M. FischlinA. LehmannT. RistenpartT. ShrimptonM. Stam and S. Tessaro, Random oracles with (out) programmability, International Conference on the Theory and Application of Cryptology and Information Security, 6477 (2010), 303-320.  doi: 10.1007/978-3-642-17373-8_18.  Google Scholar

[86]

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979.  Google Scholar

[87]

S. GargC. Gentry and S. Halevi, Candidate multilinear maps from ideal lattices, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 7881 (2013), 1-17.  doi: 10.1007/978-3-642-38348-9_1.  Google Scholar

[88]

S. GargC. GentryS. HaleviM. RaykovaA. Sahai and B. Waters, Candidate indistinguishability obfuscation and functional encryption for all circuits, SIAM J. Comput., 45 (2016), 882-929.  doi: 10.1137/14095772X.  Google Scholar

[89]

S. GargC. GentryS. Halevi and M. Zhandry, Functional encryption without obfuscation, Theory of Cryptography Conference, 9563 (2016), 480-511.  doi: 10.1007/978-3-662-49099-0_18.  Google Scholar

[90]

R. Gay, Public-Key Encryption, Revisited: Tight Security and Richer Functionalities, PhD thesis, PSL Research University, 2019. Google Scholar

[91]

R. Gay, A new paradigm for public-key functional encryption for degree-2 polynomials, IACR International Conference on Public-Key Cryptography, 12110 (2020), 95-120.  doi: 10.1007/978-3-030-45374-9_4.  Google Scholar

[92]

C. Gentry, Practical identity-based encryption without random oracles, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 4004 (2006), 445-464.  doi: 10.1007/11761679_27.  Google Scholar

[93]

C. Gentry, Fully homomorphic encryption using ideal lattices, STOC'09¡ªProceedings of the 2009 ACM International Symposium on Theory of Computing, ACM, New York, (2009), 169–178.  Google Scholar

[94]

C. GentryS. Gorbunov and S. Halevi, Graph-induced multilinear maps from lattices, Theory of Cryptography Conference, 9015 (2015), 498-527.  doi: 10.1007/978-3-662-46497-7_20.  Google Scholar

[95]

C. Gentry and A. Silverberg, Hierarchical ID-based cryptography, International Conference on the Theory and Application of Cryptology and Information Security, 2501 (2002), 548-566.  doi: 10.1007/3-540-36178-2_34.  Google Scholar

[96]

F. GiaconR. Aragona and M. Sala, A proof of security for a key-policy RS-ABE scheme, JP J. Algebra, Number Theory and Applications, 40 (2018), 29-90.  doi: 10.17654/NT040010029.  Google Scholar

[97]

S. GoldwasserS. D. GordonV. GoyalA. JainJ. KatzF.-H. LiuA. SahaiE. Shi and H.-S. Zhou, Multi-input functional encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 8441 (2014), 578-602.  doi: 10.1007/978-3-642-55220-5_32.  Google Scholar

[98]

S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan and N. Zeldovich, Reusable garbled circuits and succinct functional encryption, InProceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, (2013), 555–564. doi: 10.1145/2488608.2488678.  Google Scholar

[99]

S. GorbunovV. Vaikuntanathan and H. Wee, Functional encryption with bounded collusions via multi-party computation, Annual Cryptology Conference, 7417 (2012), 162-179.  doi: 10.1007/978-3-642-32009-5_11.  Google Scholar

[100]

S. GorbunovV. Vaikuntanathan and H. Wee, Attribute-based encryption for circuits, J. ACM (JACM), 62 (2015), 1-33.  doi: 10.1145/2824233.  Google Scholar

[101]

S. GorbunovV. Vaikuntanathan and H. Wee, Predicate encryption for circuits from LWE, Annual Cryptology Conference, 9216 (2015), 503-523.  doi: 10.1007/978-3-662-48000-7_25.  Google Scholar

[102]

V. Goyal, Reducing trust in the PKG in identity based cryptosystems, Annual International Cryptology Conference, 4622 (2007), 430-447.  doi: 10.1007/978-3-540-74143-5_24.  Google Scholar

[103]

V. Goyal, O. Pandey A. Sahai and B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, In Proceedings of the 13th ACM Conference on Computer and Communications Security, (2006), 89–98. doi: 10.1145/1180405.1180418.  Google Scholar

[104]

G. Hanaoka, M. Komatsu, K. Ohara, Y. Sakai and S. Yamada, Semantic definition of anonymity in identity-based encryption and its relation to indistinguishability-based definition, In European Symposium on Research in Computer Security, (2020), 65–85. Google Scholar

[105]

G. Hanaoka and S. Yamada, A survey on identity-based encryption from lattices, Mathematical Modelling for Next-Generation Cryptography, 29 (2018), 349-365.   Google Scholar

[106]

K. He, J. Weng, J.-N. Liu, J. K. Liu, W. Liu and R. H. Deng, Anonymous identity-based broadcast encryption with chosen-ciphertext security, In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, (2016), 247–255. doi: 10.1145/2897845.2897879.  Google Scholar

[107]

J. Horwitz and B. Lynn, Toward hierarchical identity-based encryption, International Conference on the Theory and Applications of Cryptographic Techniques, 2332 (2002), 466-481.  doi: 10.1007/3-540-46035-7_31.  Google Scholar

[108]

J. Hur and D. K. Noh, Attribute-based access control with efficient revocation in data outsourcing systems, IEEE Transactions on Parallel and Distributed Systems, 22 (2010), 1214-1221.  doi: 10.1109/TPDS.2010.203.  Google Scholar

[109]

V. Iovino and G. Persiano, Hidden-vector encryption with groups of prime order, International Conference on Pairing-Based Cryptography, 5209 (2008), 75-88.  doi: 10.1007/978-3-540-85538-5_5.  Google Scholar

[110]

J. KatzA. Sahai and B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 4965 (2008), 146-162.  doi: 10.1007/978-3-540-78967-3_9.  Google Scholar

[111]

S. KimK. LewiA. MandalH. MontgomeryA. Roy and D. J. Wu, Function-hiding inner product encryption is practical, International Conference on Security and Cryptography for Networks, 11035 (2018), 544-562.   Google Scholar

[112]

S. KimJ. Kim and J. H. Seo, A new approach to practical function-private inner product encryption, Theoret. Comput. Sci., 783 (2019), 22-40.  doi: 10.1016/j.tcs.2019.03.016.  Google Scholar

[113]

C.-C. LeeP.-S. Chung and M.-S. Hwang, A survey on attribute-based encryption schemes of access control in cloud environments, IJ Network Security, 15 (2013), 231-240.   Google Scholar

[114]

K. LeeS. G. ChoiD. H. LeeJ. H. Park and M. Yung, Self-updatable encryption: Time constrained access control with hidden attributes and better efficiency, International Conference on the Theory and Application of Cryptology and Information Security, 8269 (2013), 235-254.  doi: 10.1007/978-3-642-42033-7_13.  Google Scholar

[115]

A. LewkoT. OkamotoA. SahaiK. Takashima and B. Waters, Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6110 (2010), 62-91.  doi: 10.1007/978-3-642-13190-5_4.  Google Scholar

[116]

A. Lewko and B. Waters, New techniques for dual system encryption and fully secure HIBE with short ciphertexts, Theory of Cryptography Conference, 5978 (2010), 455-479.  doi: 10.1007/978-3-642-11799-2_27.  Google Scholar

[117]

A. Lewko and B. Waters, Decentralizing attribute-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6632 (2011), 568-588.  doi: 10.1007/978-3-642-20465-4_31.  Google Scholar

[118]

A. Lewko and B. Waters, Unbounded HIBE and attribute-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6632 (2011), 547-567.  doi: 10.1007/978-3-642-20465-4_30.  Google Scholar

[119]

J. LiS. HuY. Zhang and J. Han, A decentralized multi-authority ciphertext-policy attribute-based encryption with mediated obfuscation, Soft Computing, 24 (2020), 1869-1882.  doi: 10.1007/s00500-019-04018-y.  Google Scholar

[120]

J. LiQ. Yu and Y. Zhang, Hierarchical attribute based encryption with continuous leakage-resilience, Information Sciences, 484 (2019), 113-134.   Google Scholar

[121]

B. Libert and R. Ţiţiu, Multi-client functional encryption for linear functions in the standard model from LWE, In International Conference on the Theory and Application of Cryptology and Information Security, (2019), 520–551. Google Scholar

[122]

H. LinZ. CaoX. Liang and J. Shao, Secure threshold multi authority attribute based encryption without a central authority, Inform. Sci., 180 (2010), 2618-2632.  doi: 10.1016/j.ins.2010.03.004.  Google Scholar

[123]

H. Lin, Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs, Annual International Cryptology Conference, 10401 (2017), 599-629.  doi: 10.1007/978-3-319-63688-7_20.  Google Scholar

[124]

H. Lin and S. Tessaro, Indistinguishability obfuscation from trilinear maps and block-wise local PRGs, Annual International Cryptology Conference, 10401 (2017), 630-660.   Google Scholar

[125]

W. LiuQ. HuangX. Chen and H. Li, Efficient functional encryption for inner product with simulation-based security, Cybersecurity, 4 (2021), 1-13.   Google Scholar

[126]

Z. Liu, Z. Cao and D. S. Wong, Blackbox traceable CP-ABE: How to catch people leaking their keys by selling decryption devices on ebay, In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, (2013), 475–486. doi: 10.1145/2508859.2516683.  Google Scholar

[127]

Z. Liu and D. S. Wong, Practical ciphertext-policy attribute-based encryption: Traitor tracing, revocation, and large universe, International Conference on Applied Cryptography and Network Security, 9092 (2015), 127-146.  doi: 10.1007/978-3-319-28166-7_7.  Google Scholar

[128]

Z. Liu and D. S. Wong, Traceable CP-ABE on prime order groups: Fully secure and fully collusion-resistant blackbox traceable, International Conference on Information and Communications Security, 9543 (2015), 109-124.  doi: 10.1007/978-3-319-29814-6_10.  Google Scholar

[129]

R. LongoC. Marcolla and M. Sala, Key-policy multi-authority attribute-based encryption, International Conference on Algebraic Informatics, 9270 (2015), 152-164.  doi: 10.1007/978-3-319-23021-4_14.  Google Scholar

[130]

R. Longo, C. Marcolla and M. Sala, Collaborative Multi-authority KP-ABE for Shorter Keys and Parameters, International Conference on Algebraic Informatics, 2017, https://eprint.iacr.org/2016/262. Google Scholar

[131]

F. Ma and M. Zhandry, The MMap strikes back: Obfuscation and new multilinear maps immune to CLT13 zeroizing attacks, Theory of Cryptography Conference, 11240 (2018), 513-543.   Google Scholar

[132]

X. MaX. Wang and D. Lin, Anonymous identity-based encryption with identity recovery, Australasian Conference on Information Security and Privacy, 10946 (2018), 360-375.  doi: 10.1007/978-3-319-93638-3_21.  Google Scholar

[133]

A. J. MenezesT. Okamoto and S. A. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Trans. Inform. Theory, 39 (1993), 1639-1646.  doi: 10.1109/18.259647.  Google Scholar

[134]

V. S. Miller, The Weil pairing, and its efficient calculation, J. Cryptology, 17 (2004), 235-261.  doi: 10.1007/s00145-004-0315-8.  Google Scholar

[135]

A. MiyajiM. Nakabayashi and S. Takano, New explicit conditions of elliptic curve traces for FR-reduction., IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 84 (2001), 1234-1243.   Google Scholar

[136]

S. MüllerS. Katzenbeisser and C. Eckert, Distributed attribute-based encryption, International Conference on Information Security and Cryptology, 5461 (2008), 20-36.  doi: 10.1007/978-3-642-00730-9_2.  Google Scholar

[137]

D. Naccache, Secure and practical identity-based encryption, IET Information Security, 1 (2007), 59-64.  doi: 10.1049/iet-ifs:20055097.  Google Scholar

[138]

M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux and C. Gunter, Controlled functional encryption, In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, (2014), 1280–1291. doi: 10.1145/2660267.2660291.  Google Scholar

[139]

J. NingZ. CaoX. DongL. Wei and X. Lin, Large universe ciphertext-policy attribute-based encryption with white-box traceability, European Symposium on Research in Computer Security, 8713 (2014), 55-72.  doi: 10.1007/978-3-319-11212-1_4.  Google Scholar

[140]

T. Okamoto and K. Takashima, Homomorphic encryption and signatures from vector decomposition, International Conference on Pairing-Based Cryptography, 5209 (2008), 57-74.  doi: 10.1007/978-3-540-85538-5_4.  Google Scholar

[141]

T. Okamoto and K. Takashima, Hierarchical predicate encryption for inner-products, International Conference on the Theory and Application of Cryptology and Information Security, 5912 (2009), 214-231.  doi: 10.1007/978-3-642-10366-7_13.  Google Scholar

[142]

T. Okamoto and K. Takashima, Fully secure functional encryption with general relations from the decisional linear assumption, Annual Cryptology Conference, 6223 (2010), 191-208.  doi: 10.1007/978-3-642-14623-7_11.  Google Scholar

[143]

T. Okamoto and K. Takashima, Adaptively attribute-hiding (hierarchical) inner product encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 7237 (2012), 591-608.  doi: 10.1007/978-3-642-29011-4_35.  Google Scholar

[144]

T. Okamoto and K. Takashima, Fully secure unbounded inner-product and attribute-based encryption, International Conference on the Theory and Application of Cryptology and Information Security, 7658 (2012), 349-366.  doi: 10.1007/978-3-642-34961-4_22.  Google Scholar

[145]

T. Okamoto and K. Takashima, Efficient (hierarchical) inner-product encryption tightly reduced from the decisional linear assumption, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96 (2013), 42-52.  doi: 10.1587/transfun.E96.A.42.  Google Scholar

[146]

A. O'Neill, Definitional Issues in Functional Encryption, Cryptology ePrint Archive, Report 2009/556, 2010, https://eprint.iacr.org/2010/556. Google Scholar

[147]

R. Ostrovsky, A. Sahai and B. Waters, Attribute-based encryption with non-monotonic access structures, In Proceedings of the 14th ACM Conference on Computer and Communications Security, (2007), 195–203. doi: 10.1145/1315245.1315270.  Google Scholar

[148]

D. PageN. P. Smart and F. Vercauteren, A comparison of MNT curves and supersingular curves, Appl. Algebra Engrg. Comm. Comput., 17 (2006), 379-392.  doi: 10.1007/s00200-006-0017-6.  Google Scholar

[149]

J. H. Park, Efficient hidden vector encryption for conjunctive queries on encrypted data, IEEE Transactions on Knowledge and Data Engineering, 23 (2010), 1483-1497.  doi: 10.1109/TKDE.2010.206.  Google Scholar

[150]

J. H. Park, Inner-product encryption under standard assumptions, Des. Codes Cryptogr., 58 (2011), 235-257.  doi: 10.1007/s10623-010-9405-9.  Google Scholar

[151]

J. H. ParkK. LeeW. Susilo and D. H. Lee, Fully secure hidden vector encryption under standard assumptions, Inform. Sci., 232 (2013), 188-207.  doi: 10.1016/j.ins.2012.12.034.  Google Scholar

[152]

J. Patarin and L. Goubin, Trapdoor one-way permutations and multivariate polynomials, International Conference on Information and Communications Security, 1334 (1997), 356-368.  doi: 10.1007/BFb0028491.  Google Scholar

[153]

C. Peikert, Bonsai Trees (or, Arboriculture in Lattice-Based Cryptography), Cryptology ePrint Archive, Report 2009/359, 2009, https://eprint.iacr.org/2009/359. Google Scholar

[154]

D. H. Phan and V. C. Trinh, Identity-based trace and revoke schemes, International Conference on Provable Security, 6980 (2011), 204-221.  doi: 10.1007/978-3-642-24316-5_15.  Google Scholar

[155]

Z. Qiao, S. Liang, S. Davis and H. Jiang, Survey of attribute based encryption, In 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), (2014), 1–6. doi: 10.1109/SNPD.2014.6888687.  Google Scholar

[156]

Y. RahulamathavanS. VeluruJ. HanF. LiM. Rajarajan and R. Lu, User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption, IEEE Trans. Comput., 65 (2016), 2939-2946.  doi: 10.1109/TC.2015.2510646.  Google Scholar

[157]

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM (JACM), 56 (2009), 1-40.  doi: 10.1145/1568318.1568324.  Google Scholar

[158]

K. Dey, S. K. Debnath, S. Mesnager and N. Kundu, Post-quantum secure inner product functional encryption using multivariate public key cryptography, Mediterr. J. Math., 18 (2021). doi: 10.1007/s00009-021-01841-2.  Google Scholar

[159]

A. Sahai and H. Seyalioglu, Worry-free encryption: Functional encryption with public keys, In Proceedings of the 17th ACM Conference on Computer and CVommunications Security, (2010), 463–472. doi: 10.1145/1866307.1866359.  Google Scholar

[160]

A. Sahai and B. Waters, Fuzzy identity-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 3494 (2005), 457-473.  doi: 10.1007/11426639_27.  Google Scholar

[161]

S. SedghiP. V. LiesdonkS. NikovaP. Hartel and W. Jonker, Searching keywords with wildcan on encrypted data, International Conference on Security and Cryptography for Networks, 6280 (2010), 138-153.  doi: 10.1007/978-3-642-15317-4_10.  Google Scholar

[162]

A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[163]

A. Shamir, Identity-based cryptosystems and signature schemes, Workshop on the Theory and Application of Cryptographic Techniques, 196 (1984), 47-53.  doi: 10.1007/3-540-39568-7_5.  Google Scholar

[164]

E. ShenE. Shi and B. Waters, Predicate privacy in encryption systems, Theory of Cryptography Conference, 5444 (2009), 457-473.  doi: 10.1007/978-3-642-00457-5_27.  Google Scholar

[165]

E. Shi and B. Waters, Delegating capabilities in predicate encryption systems, In International Colloquium on Automata, Languages, and Programming, $ \mathtt 5126 $ (2008), 560–578. doi: 10.1007/978-3-540-70583-3_46.  Google Scholar

[166]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, 41 (1999), 303-332.  doi: 10.1137/S0036144598347011.  Google Scholar

[167]

J. H. Silverman, The Arithmetic of Elliptic Curves, 2$^nd$ edition, Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-09494-6.  Google Scholar

[168]

N. SoroushV. IovinoA. RialP. B. Roenne and P. Y. Ryan, Verifiable inner product encryption scheme, IACR International Conference on Public-Key Cryptography, 12110 (2020), 65-94.  doi: 10.1007/978-3-030-45374-9_3.  Google Scholar

[169]

K. Takashima, Efficiently computable distortion maps for supersingular curves, International Algorithmic Number Theory Symposium, 5011 (2008), 88-101.  doi: 10.1007/978-3-540-79456-1_5.  Google Scholar

[170]

C. Tang, D. Pei, Z. Liu and Y. He, Non-Interactive and Information-Theoretic Secure Publicly Verifiable Secret Sharing, Cryptology ePrint Archive, Report 2004/201, 2004, https://eprint.iacr.org/2004/201. Google Scholar

[171]

Q. Tang and D. Ji, Verifiable attribute-based encryption, IJ Network Security, 10 (2010), 114-120.   Google Scholar

[172]

B. C. Tea, M. R. K. Ariffin and M. A. Asbullah, Identity-based encryption schemes–A review, J. Multidisciplinary Engineering Science and Technology (JMEST), 6 (2019). Google Scholar

[173]

J. TomidaM. Abe and T. Okamoto, Efficient functional encryption for inner-product values with full-hiding security, International Conference on Information Security, 9866 (2016), 408-425.  doi: 10.1007/978-3-319-45871-7_24.  Google Scholar

[174]

J. Tomida and K. Takashima, Unbounded inner product functional encryption from bilinear maps, Jpn. J. Ind. Appl. Math., 37 (2020), 723-779.  doi: 10.1007/s13160-020-00419-x.  Google Scholar

[175]

T. van de KampA. Peter and W. Jonker, A multi-authority approach to various predicate encryption types, Des. Codes Cryptogr., 88 (2020), 363-390.  doi: 10.1007/s10623-019-00686-x.  Google Scholar

[176]

G. Wang, Q. Liu and J. Wu, Hierarchical attribute-based encryption for fine-grained access control in cloud storage services, In Proceedings of the 17th ACM Conference on Computer and Communications Security, (2010), 735–737. doi: 10.1145/1866307.1866414.  Google Scholar

[177]

B. Waters, Efficient identity-based encryption without random oracles, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 3494 (2005), 114-127.  doi: 10.1007/11426639_7.  Google Scholar

[178]

B. Waters, Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions, Annual International Cryptology Conference, 5677 (2009), 619-636.  doi: 10.1007/978-3-642-03356-8_36.  Google Scholar

[179]

B. Waters, Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization, International Workshop on Public Key Cryptography, 6571 (2011), 53-70.  doi: 10.1007/978-3-642-19379-8_4.  Google Scholar

[180]

H. Wee, Attribute-hiding predicate encryption in bilinear groups, revisited, Theory of Cryptography Conference, 10677 (2017), 206-233.  doi: 10.1007/978-3-319-70500-2_8.  Google Scholar

[181]

H. Wee, Functional encryption for quadratic functions from $k$-Lin, revisited, Theory of Cryptography Conference, 12550 (2020), 210-228.  doi: 10.1007/978-3-030-64375-1_8.  Google Scholar

[182]

P. Xu, J. Li, W. Wang and H. Jin, Anonymous identity-based broadcast encryption with constant decryption complexity and strong security, In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, (2016), 223–233. doi: 10.1145/2897845.2897853.  Google Scholar

[183]

Y. YangX. ChenH. Chen and X. Du, Improving privacy and security in decentralizing multi-authority attribute-based encryption in cloud computing, IEEE Access, 6 (2018), 18009-18021.  doi: 10.1109/ACCESS.2018.2820182.  Google Scholar

[184]

M. ZhangB. Yang and T. Takagi, Bounded leakage-resilient functional encryption with hidden vector predicate, Computer Journal, 56 (2013), 464-477.  doi: 10.1093/comjnl/bxs133.  Google Scholar

[185]

Y. ZhangR. H. DengS. XuJ. SunQ. Li and D. Zheng, Attribute-based encryption for cloud computing access control: A survey, ACM Computing Surveys (CSUR), 53 (2020), 1-41.   Google Scholar

[186]

Q. Zhao, Q. Zeng and X. Liu, Improved construction for inner product functional encryption, Security and Communication Networks, 2018 (2018). doi: 10.1155/2018/6561418.  Google Scholar

[187]

Q. ZhaoQ. ZengX. Liu and H. Xu, Simulation-based security of function-hiding inner product encryption, Sci. China Inf. Sci., 61 (2018), 1-3.  doi: 10.1007/s11432-017-9224-9.  Google Scholar

show all references

References:
[1]

M. AbdallaF. BenhamoudaM. Kohlweiss and H. Waldner, Decentralizing inner-product functional encryption, IACR International Workshop on Public Key Cryptography, 11443 (2019), 128-157.  doi: 10.1007/978-3-030-17259-6_5.  Google Scholar

[2]

M. AbdallaF. BourseA. D. Caro and D. Pointcheval, Simple functional encryption schemes for inner products, IACR International Workshop on Public Key Cryptography, 9020 (2015), 733-751.  doi: 10.1007/978-3-662-46447-2_33.  Google Scholar

[3]

M. AbdallaF. BourseH. MarivalD. PointchevalA. Soleimanian and H. Waldner, Multi-client inner-product functional encryption in the random-oracle model, International Conference on Security and Cryptography for Networks, 12238 (2020), 525-545.  doi: 10.1007/978-3-030-57990-6_26.  Google Scholar

[4]

M. AbdallaD. CatalanoD. FioreR. Gay and B. Ursu, Multi-input functional encryption for inner products: Function-hiding realizations and constructions without pairings, Annual International Cryptology Conference, 10991 (2018), 597-627.  doi: 10.1007/978-3-319-96884-1_20.  Google Scholar

[5]

M. AbdallaA. W. DentJ. Malone-LeeG. NevenD. Hieu Phan and N. P Smart, Identity-based traitor tracing, International Workshop on Public Key Cryptography, 4450 (2007), 361-376.  doi: 10.1007/978-3-540-71677-8_24.  Google Scholar

[6]

M. AbdallaR. GayM. Raykova and H. Wee, Multi-input inner-product functional encryption from pairings, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 10210 (2017), 601-626.  doi: 10.1007/978-3-319-56620-7_21.  Google Scholar

[7]

S. AgrawalS. AgrawalS. BadrinarayananA. KumarasubramanianM. Prabhakaran and A. Sahai, On the practical security of inner product functional encryption, IACR International Workshop on Public Key Cryptography, 9020 (2015), 777-798.  doi: 10.1007/978-3-662-46447-2_35.  Google Scholar

[8]

S. Agrawal, Stronger security for reusable garbled circuits, general definitions and attacks, Annual International Cryptology Conference, 10401 (2017), 3-35.  doi: 10.1007/978-3-319-63688-7_1.  Google Scholar

[9]

S. AgrawalD. Boneh and X. Boyen, Efficient lattice (H) IBE in the standard model, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6110 (2010), 553-572.  doi: 10.1007/978-3-642-13190-5_28.  Google Scholar

[10]

S. Agrawal, M. Clear, O. Frieder, S. Garg, A. O'Neill and J. Thaler, Ad hoc multi-input functional encryption, In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 151 (2020), 1–41. Google Scholar

[11]

S. AgrawalD. M. Freeman and V. Vaikuntanathan, Functional encryption for inner product predicates from learning with errors, International Conference on the Theory and Application of Cryptology and Information Security, 7073 (2011), 21-40.  doi: 10.1007/978-3-642-25385-0_2.  Google Scholar

[12]

S. AgrawalS. GorbunovV. Vaikuntanathan and H. Wee, Functional encryption: New perspectives and lower bounds, Annual Cryptology Conference, 8043 (2013), 500-518.  doi: 10.1007/978-3-642-40084-1_28.  Google Scholar

[13]

S. Agrawal, R. Goyal and J. Tomida, Multi-Input Quadratic Functional Encryption From Pairings, Cryptology ePrint Archive, Report 2020/1285, 2020, https://eprint.iacr.org/2020/1285. Google Scholar

[14]

S. Agrawal, R. Goyal and J. Tomida, Multi-Party Functional Encryption, Cryptology ePrint Archive, Report 2020/1266, 2020, https://eprint.iacr.org/2020/1266. Google Scholar

[15]

S. Agrawal, B. Libert, M. Maitra and R. Titiu, Adaptive simulation security for inner product functional encryption, In IACR International Conference on Public-Key Cryptography, Springer, Cham, 12110 (2020), 34–64. doi: 10.1007/978-3-030-45374-9_2.  Google Scholar

[16]

S. AgrawalB. Libert and D. Stehlé, Fully secure functional encryption for inner products, from standard assumptions, Annual International Cryptology Conference, 9816 (2016), 333-362.  doi: 10.1007/978-3-662-53015-3_12.  Google Scholar

[17]

R. R. Al-Dahhan, Q. Shi, G. Myoung Lee and K. Kifayat, Survey on revocation in ciphertext-policy attribute-based encryption, Sensors, 19 (2019). doi: 10.3390/s19071695.  Google Scholar

[18]

J. AlwenM. BarbosaP. FarshimR. GennaroS. GordonS. Tessaro and D. A. Wilson, On the relationship between functional encryption, obfuscation, and fully homomorphic encryption, IMA International Conference on Cryptography and Coding, 8308 (2013), 65-84.  doi: 10.1007/978-3-642-45239-0_5.  Google Scholar

[19]

M. AmbronaD. Fiore and C. Soriente, Controlled functional encryption revisited: Multi-authority extensions and efficient schemes for quadratic functions, Proceedings on Privacy Enhancing Technologies, 2021 (2021), 21-42.   Google Scholar

[20]

P. Ananth, D. Boneh, S. Garg, A. Sahai and M. Zhandry, Differing-Inputs Obfuscation and Applications, Cryptology ePrint Archive, Report 2013/689, 2013, https://eprint.iacr.org/2013/689. Google Scholar

[21]

P. AnanthZ. BrakerskiG. Segev and V. Vaikuntanathan, From Selective to Adaptive Security in Functional Encryption, Annual Cryptology Conference, 9216 (2015), 657-677.  doi: 10.1007/978-3-662-48000-7_32.  Google Scholar

[22]

P. Ananth and A. Sahai, Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 10210 (2017), 152-181.  doi: 10.1007/978-3-319-56620-7.  Google Scholar

[23]

N. AttrapadungJ. HerranzF. LaguillaumieB. LibertE. De Panafieu and C. Ràfols, Attribute-based encryption schemes with constant-size ciphertexts, Theoret. Comput. Sci., 422 (2012), 15-38.  doi: 10.1016/j.tcs.2011.12.004.  Google Scholar

[24]

M. AuQ. HuangJ. K. LiuW. SusiloD. S. Wong and G. Yang, Traceable and retrievable identity-based encryption, International Conference on Applied Cryptography and Network Security, 5037 (2008), 94-110.  doi: 10.1007/978-3-540-68914-0_6.  Google Scholar

[25]

S. BadrinarayananV. GoyalA. Jain and A. Sahai, Verifiable functional encryption, International Conference on the Theory and Application of Cryptology and Information Security, 10032 (2016), 557-587.  doi: 10.1007/978-3-662-53890-6_19.  Google Scholar

[26]

C. E. Z. BalticoD. CatalanoD. Fiore and R. Gay, Practical functional encryption for quadratic functions with applications to predicate encryption, Annual International Cryptology Conference, 10401 (2017), 67-98.  doi: 10.1007/978-3-319-63688-7_3.  Google Scholar

[27]

M. BarbosaD. CatalanoA. Soleimanian and B. Warinschi, Efficient function-hiding functional encryption: From inner-products to orthogonality, Cryptographers' Track at the RSA Conference, 11405 (2019), 127-148.  doi: 10.1007/978-3-030-12612-4_7.  Google Scholar

[28]

J. BartusekB. CarmerA. JainZ. JinT. LepointF. MaT. MalkinA. J. Malozemoff and M. Raykova, Public-key function-private hidden vector encryption (and more), International Conference on the Theory and Application of Cryptology and Information Security, 11923 (2019), 489-519.  doi: 10.1007/978-3-030-34618-8_17.  Google Scholar

[29]

M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, In Proceedings of the 1st ACM Conference on Computer and Communications Security, (1993), 62–73. doi: 10.1145/168588.168596.  Google Scholar

[30]

F. BenhamoudaF. Bourse and H. Lipmaa, CCA-secure inner-product functional encryption from projective hash functions, IACR International Workshop on Public Key Cryptography, 10175 (2017), 36-66.  doi: 10.1007/978-3-662-54388-7_2.  Google Scholar

[31]

J. Bethencourt, A. Sahai and B. Waters, Ciphertext-policy attribute-based encryption, In 2007 IEEE Symposium on Security and Privacy (SP'07), (2007), 321–334. doi: 10.1109/SP.2007.11.  Google Scholar

[32]

A. BishopA. Jain and L. Kowalczyk, Function-hiding inner product encryption, International Conference on the Theory and Application of Cryptology and Information Security, 9452 (2015), 470-491.  doi: 10.1007/978-3-662-48797-6_20.  Google Scholar

[33]

I. F. BlakeV. K. Murty and G. Xu, Refinements of Miller's algorithm for computing the Weil/Tate pairing, J. Algorithms, 58 (2006), 134-149.  doi: 10.1016/j.jalgor.2005.01.009.  Google Scholar

[34]

O. Blazy, L. Brouilhet and D. H. Phan, Anonymous identity based encryption with traceable identities, InProceedings of the 14th International Conference on Availability, Reliability and Security, (2019), 1–10. doi: 10.1145/3339252.3339271.  Google Scholar

[35]

D. Boneh and X. Boyen, Efficient selective-ID secure identity-based encryption without random oracles, International Conference on the Theory and Applications of Cryptographic Techniques, 3027 (2004), 223-238.  doi: 10.1007/978-3-540-24676-3_14.  Google Scholar

[36]

D. Boneh and X. Boyen, Secure identity based encryption without random oracles, Annual International Cryptology Conference, 3152 (2004), 443-459.  doi: 10.1007/978-3-540-28628-8_27.  Google Scholar

[37]

D. BonehX. Boyen and E.-J. Goh, Hierarchical identity based encryption with constant size ciphertext, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 3494 (2005), 440-456.  doi: 10.1007/11426639_26.  Google Scholar

[38]

D. BonehX. Boyen and H. Shacham, Short group signatures, Annual International Cryptology Conference, 3152 (2004), 41-55.  doi: 10.1007/978-3-540-28628-8_3.  Google Scholar

[39]

D. BonehG. D. CrescenzoR. Ostrovsky and G. Persiano, Public key encryption with keyword search, International Conference on the Theory and Applications of Cryptographic Techniques, 3027 (2004), 506-522.  doi: 10.1007/978-3-540-24676-3_30.  Google Scholar

[40]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Annual International Cryptology Conference, 2139 (2001), 213-229.  doi: 10.1007/3-540-44647-8_13.  Google Scholar

[41]

D. BonehC. GentryS. GorbunovS. HaleviV. NikolaenkoG. SegevV. Vaikuntanathan and D. Vinayagamurthy, Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 8441 (2014), 533-556.  doi: 10.1007/978-3-642-55220-5_30.  Google Scholar

[42]

D. Boneh, C. Gentry and M. Hamburg, Space-efficient identity based encryptionwithout pairings, In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), (2007), 647–657. doi: 10.1109/FOCS.2007.50.  Google Scholar

[43]

D. BonehK. LewiM. RaykovaA. SahaiM. Zhandry and J. Zimmerman, Semantically secure order-revealing encryption: Multi-input functional encryption without obfuscation, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 9057 (2015), 563-594.  doi: 10.1007/978-3-662-46803-6_19.  Google Scholar

[44]

D. BonehA. Raghunathan and G. Segev, Function-private identity-based encryption: Hiding the function in functional encryption, Annual Cryptology Conference, 8043 (2013), 461-478.  doi: 10.1007/978-3-642-40084-1_26.  Google Scholar

[45]

D. BonehA. Raghunathan and G. Segev, Function-private subspace-membership encryption and its applications, International Conference on the Theory and Application of Cryptology and Information Security, 8269 (2013), 255-275.  doi: 10.1007/978-3-642-42033-7_14.  Google Scholar

[46]

D. BonehA. Sahai and B. Waters, Fully collusion resistant traitor tracing with short ciphertexts and private keys, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 4004 (2006), 573-592.  doi: 10.1007/11761679_34.  Google Scholar

[47]

D. BonehA. Sahai and B. Waters, Functional encryption: Definitions and challenges, Theory of Cryptography Conference, 6597 (2011), 253-273.  doi: 10.1007/978-3-642-19571-6_16.  Google Scholar

[48]

D. BonehA. Sahai and B. Waters, Functional encryption: A new vision for public-key cryptography, Communications of the ACM, 55 (2012), 56-64.   Google Scholar

[49]

D. Boneh and A. Silverberg, Applications of multilinear forms to cryptography, Contemp. Math., 324 (2003), 71-90.   Google Scholar

[50]

D. Boneh and B. Waters, Conjunctive, subset, and range queries on encrypted data, Theory of Cryptography Conference, 4392 (2007), 535-554.  doi: 10.1007/978-3-540-70936-7_29.  Google Scholar

[51]

X. Boyen, Multipurpose identity-based signcryption: A Swiss Army knife for identity-based cryptography, Annual International Cryptology Conference, 2729 (2003), 383-399.  doi: 10.1007/978-3-540-45146-4_23.  Google Scholar

[52]

X. Boyen, A tapestry of identity-based encryption: Practical frameworks compared, Int. J. Appl. Cryptogr., 1 (2008), 3-21.  doi: 10.1504/IJACT.2008.017047.  Google Scholar

[53]

X. Boyen and B. Waters, Anonymous hierarchical identity-based encryption (without random oracles), Annual International Cryptology Conference, 4117 (2006), 290-307.  doi: 10.1007/11818175_17.  Google Scholar

[54]

Z. BrakerskiN. ChandranV. GoyalA. JainA. Sahai and G. Segev, Hierarchical functional encryption, Leibniz Int. Proc. Inform. (LIPIcs), 67 (2017), 1-27.   Google Scholar

[55]

Z. Brakerski and G. Segev, Function-private functional encryption in the private-key setting, J. Cryptology, 31 (2018), 202-225.  doi: 10.1007/s00145-017-9255-y.  Google Scholar

[56]

Z. Brakerski and V. Vaikuntanathan, Circuit-ABE from LWE: Unbounded attributes and semi-adaptive security, Annual International Cryptology Conference, 9816 (2016), 363-384.  doi: 10.1007/978-3-662-53015-3_13.  Google Scholar

[57]

J. CamenischM. KohlweissA. Rial and C. Sheedy, Blind and anonymous identity-based encryption and authorised private searches on public key encrypted data, International Workshop on Public Key Cryptography, 5443 (2009), 196-214.  doi: 10.1007/978-3-642-00468-1_12.  Google Scholar

[58]

R. CanettiS. Halevi and J. Katz, A forward-secure public-key encryption scheme, International Conference on the Theory and Applications of Cryptographic Techniques, 2656 (2003), 255-271.  doi: 10.1007/3-540-39200-9_16.  Google Scholar

[59]

D. CashD. HofheinzE. Kiltz and C. Peikert, Bonsai trees, or how to delegate a lattice basis, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6110 (2010), 523-552.  doi: 10.1007/978-3-642-13190-5_27.  Google Scholar

[60]

G. CastagnosF. Laguillaumie and I. Tucker, Practical fully secure unrestricted inner product functional encryption modulo $p$, International Conference on the Theory and Application of Cryptology and Information Security, 11273 (2018), 733-764.  doi: 10.1007/978-3-030-03329-3_25.  Google Scholar

[61]

M. Chase, Multi-authority attribute based encryption, Theory of Cryptography Conference, 4392 (2007), 515-534.  doi: 10.1007/978-3-540-70936-7_28.  Google Scholar

[62]

M. Chase and S. S. Chow, Improving privacy and security in multi-authority attribute-based encryption, In Proceedings of the 16th ACM Conference on Computer and Communications Security, (2009), 121–130. Google Scholar

[63]

S. Chatterjee and P. Sarkar, Trading time for space: Towards an efficient IBE scheme with short(er) public parameters in the standard model, International Conference on Information Security and Cryptology, 3935 (2005), 424-440.  doi: 10.1007/11734727_33.  Google Scholar

[64]

J. ChenJ. LingJ. Ning and J. Ding, Identity-based signature schemes for multivariate public key cryptosystems, Comput. J., 62 (2019), 1132-1147.  doi: 10.1093/comjnl/bxz013.  Google Scholar

[65]

J. ChenJ. GongL. Kowalczyk and H. Wee, Unbounded ABE via bilinear entropy expansion, revisited, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 10820 (2018), 503-534.  doi: 10.1007/978-3-319-78381-9_19.  Google Scholar

[66]

J. Chen and H. Wee, Fully, (almost) tightly secure IBE and dual system groups, Annual Cryptology Conference, 8043 (2013), 435-460.  doi: 10.1007/978-3-642-40084-1_25.  Google Scholar

[67]

J. H. CheonK. HanC. LeeH. Ryu and D. Stehlé, Cryptanalysis of the multilinear map over the integers, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 9056 (2015), 3-12.  doi: 10.1007/978-3-662-46800-5_1.  Google Scholar

[68]

J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan and D. Pointcheval, Dynamic decentralized functional encryption, In Annual International Cryptology Conference, 12170 (2020) 747–775. doi: 10.1007/978-3-030-56784-2_25.  Google Scholar

[69]

J. ChotardE. D. SansR. GayD. H. Phan and D. Pointcheval, Decentralized multi-client functional encryption for inner product, International Conference on the Theory and Application of Cryptology and Information Security, 11273 (2018), 703-732.  doi: 10.1007/978-3-030-03329-3_24.  Google Scholar

[70]

M. Ciampi, L. Siniscalchi and H. Waldner, Multi-client functional encryption for separable functions, In Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I, volume 12710 of Lecture Notes in Computer Science, pages 724–753. Springer, 2021. Google Scholar

[71]

C. Cocks, An identity based encryption scheme based on quadratic residues, IMA International Conference on Cryptography and Coding, 2260 (2001), 360-363.  doi: 10.1007/3-540-45325-3_32.  Google Scholar

[72]

J.-S. CoronT. Lepoint and M. Tibouchi, Practical multilinear maps over the integers, Annual Cryptology Conference, 8042 (2013), 476-493.  doi: 10.1007/978-3-642-40041-4_26.  Google Scholar

[73]

H. Cui, T. H. Yuen, R. H. Deng and G. Wang, Server-aided revocable attribute-based encryption for cloud computing services, Concurrency and Computation: Practice and Experience, 32 (2020). Google Scholar

[74]

R. M. DanielE. B. Rajsingh and S. Silas, Analysis of hierarchical identity based encryption schemes and its applicability to computing environments, J. Information Security and Applications, 36 (2017), 20-31.  doi: 10.1016/j.jisa.2017.07.005.  Google Scholar

[75]

P. DattaR. Dutta and S. Mukhopadhyay, Functional encryption for inner product with full function privacy, Public-Key Cryptography–PKC 2016, 9614 (2016), 164-195.  doi: 10.1007/978-3-662-49384-7_7.  Google Scholar

[76]

P. DattaR. Dutta and S. Mukhopadhyay, Strongly full-hiding inner product encryption, Theoret. Comput. Sci., 667 (2017), 16-50.  doi: 10.1016/j.tcs.2016.12.024.  Google Scholar

[77]

P. DattaT. Okamoto and J. Tomida, Full-hiding (unbounded) multi-input inner product functional encryption from the $k$-linear assumption, IACR International Workshop on Public Key Cryptography, 10770 (2018), 245-277.  doi: 10.1007/978-3-319-76581-5_9.  Google Scholar

[78]

A. D. CaroV. Iovino and G. Persiano, Fully secure hidden vector encryption, International Conference on Pairing-Based Cryptography, 7708 (2012), 102-121.  doi: 10.1007/978-3-642-36334-4_7.  Google Scholar

[79]

De Componendis Cifris, Functional Encryption, an overview - Carla Mascia, Irene Villa, https://www.youtube.com/watch?v=jz8v22jDlAs, https://www.decifris.it/cifrisCloud. Google Scholar

[80]

H. DengQ. WuB. QinJ. Domingo-FerrerL. ZhangJ. Liu and W. Shi, Ciphertext-policy hierarchical attribute-based encryption with short ciphertexts, Inform. Sci., 275 (2014), 370-384.  doi: 10.1016/j.ins.2014.01.035.  Google Scholar

[81]

X. T. DoD. H. Phan and D. Pointcheval, Traceable inner product functional encryption, Cryptographers' Track at the RSA Conference, 12006 (2020), 564-585.  doi: 10.1007/978-3-030-40186-3_24.  Google Scholar

[82]

E. Dufour-Sans and D. Pointcheval, Unbounded inner-product functional encryption with succinct keys, International Conference on Applied Cryptography and Network Security, 11464 (2019), 426-441.  doi: 10.1007/978-3-030-21568-2_21.  Google Scholar

[83]

A. EscalaG. HeroldE. KiltzC. Rafols and J. Villar, An algebraic framework for Diffie–Hellman assumptions, J. Cryptology, 30 (2017), 242-288.  doi: 10.1007/s00145-015-9220-6.  Google Scholar

[84]

C.-I. Fan and Y.-F. Tseng, Anonymous multi-receiver identity-based authenticated encryption with CCA security, Symmetry, 7 (2015), 1856-1881.  doi: 10.3390/sym7041856.  Google Scholar

[85]

M. FischlinA. LehmannT. RistenpartT. ShrimptonM. Stam and S. Tessaro, Random oracles with (out) programmability, International Conference on the Theory and Application of Cryptology and Information Security, 6477 (2010), 303-320.  doi: 10.1007/978-3-642-17373-8_18.  Google Scholar

[86]

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979.  Google Scholar

[87]

S. GargC. Gentry and S. Halevi, Candidate multilinear maps from ideal lattices, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 7881 (2013), 1-17.  doi: 10.1007/978-3-642-38348-9_1.  Google Scholar

[88]

S. GargC. GentryS. HaleviM. RaykovaA. Sahai and B. Waters, Candidate indistinguishability obfuscation and functional encryption for all circuits, SIAM J. Comput., 45 (2016), 882-929.  doi: 10.1137/14095772X.  Google Scholar

[89]

S. GargC. GentryS. Halevi and M. Zhandry, Functional encryption without obfuscation, Theory of Cryptography Conference, 9563 (2016), 480-511.  doi: 10.1007/978-3-662-49099-0_18.  Google Scholar

[90]

R. Gay, Public-Key Encryption, Revisited: Tight Security and Richer Functionalities, PhD thesis, PSL Research University, 2019. Google Scholar

[91]

R. Gay, A new paradigm for public-key functional encryption for degree-2 polynomials, IACR International Conference on Public-Key Cryptography, 12110 (2020), 95-120.  doi: 10.1007/978-3-030-45374-9_4.  Google Scholar

[92]

C. Gentry, Practical identity-based encryption without random oracles, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 4004 (2006), 445-464.  doi: 10.1007/11761679_27.  Google Scholar

[93]

C. Gentry, Fully homomorphic encryption using ideal lattices, STOC'09¡ªProceedings of the 2009 ACM International Symposium on Theory of Computing, ACM, New York, (2009), 169–178.  Google Scholar

[94]

C. GentryS. Gorbunov and S. Halevi, Graph-induced multilinear maps from lattices, Theory of Cryptography Conference, 9015 (2015), 498-527.  doi: 10.1007/978-3-662-46497-7_20.  Google Scholar

[95]

C. Gentry and A. Silverberg, Hierarchical ID-based cryptography, International Conference on the Theory and Application of Cryptology and Information Security, 2501 (2002), 548-566.  doi: 10.1007/3-540-36178-2_34.  Google Scholar

[96]

F. GiaconR. Aragona and M. Sala, A proof of security for a key-policy RS-ABE scheme, JP J. Algebra, Number Theory and Applications, 40 (2018), 29-90.  doi: 10.17654/NT040010029.  Google Scholar

[97]

S. GoldwasserS. D. GordonV. GoyalA. JainJ. KatzF.-H. LiuA. SahaiE. Shi and H.-S. Zhou, Multi-input functional encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 8441 (2014), 578-602.  doi: 10.1007/978-3-642-55220-5_32.  Google Scholar

[98]

S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan and N. Zeldovich, Reusable garbled circuits and succinct functional encryption, InProceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, (2013), 555–564. doi: 10.1145/2488608.2488678.  Google Scholar

[99]

S. GorbunovV. Vaikuntanathan and H. Wee, Functional encryption with bounded collusions via multi-party computation, Annual Cryptology Conference, 7417 (2012), 162-179.  doi: 10.1007/978-3-642-32009-5_11.  Google Scholar

[100]

S. GorbunovV. Vaikuntanathan and H. Wee, Attribute-based encryption for circuits, J. ACM (JACM), 62 (2015), 1-33.  doi: 10.1145/2824233.  Google Scholar

[101]

S. GorbunovV. Vaikuntanathan and H. Wee, Predicate encryption for circuits from LWE, Annual Cryptology Conference, 9216 (2015), 503-523.  doi: 10.1007/978-3-662-48000-7_25.  Google Scholar

[102]

V. Goyal, Reducing trust in the PKG in identity based cryptosystems, Annual International Cryptology Conference, 4622 (2007), 430-447.  doi: 10.1007/978-3-540-74143-5_24.  Google Scholar

[103]

V. Goyal, O. Pandey A. Sahai and B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, In Proceedings of the 13th ACM Conference on Computer and Communications Security, (2006), 89–98. doi: 10.1145/1180405.1180418.  Google Scholar

[104]

G. Hanaoka, M. Komatsu, K. Ohara, Y. Sakai and S. Yamada, Semantic definition of anonymity in identity-based encryption and its relation to indistinguishability-based definition, In European Symposium on Research in Computer Security, (2020), 65–85. Google Scholar

[105]

G. Hanaoka and S. Yamada, A survey on identity-based encryption from lattices, Mathematical Modelling for Next-Generation Cryptography, 29 (2018), 349-365.   Google Scholar

[106]

K. He, J. Weng, J.-N. Liu, J. K. Liu, W. Liu and R. H. Deng, Anonymous identity-based broadcast encryption with chosen-ciphertext security, In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, (2016), 247–255. doi: 10.1145/2897845.2897879.  Google Scholar

[107]

J. Horwitz and B. Lynn, Toward hierarchical identity-based encryption, International Conference on the Theory and Applications of Cryptographic Techniques, 2332 (2002), 466-481.  doi: 10.1007/3-540-46035-7_31.  Google Scholar

[108]

J. Hur and D. K. Noh, Attribute-based access control with efficient revocation in data outsourcing systems, IEEE Transactions on Parallel and Distributed Systems, 22 (2010), 1214-1221.  doi: 10.1109/TPDS.2010.203.  Google Scholar

[109]

V. Iovino and G. Persiano, Hidden-vector encryption with groups of prime order, International Conference on Pairing-Based Cryptography, 5209 (2008), 75-88.  doi: 10.1007/978-3-540-85538-5_5.  Google Scholar

[110]

J. KatzA. Sahai and B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 4965 (2008), 146-162.  doi: 10.1007/978-3-540-78967-3_9.  Google Scholar

[111]

S. KimK. LewiA. MandalH. MontgomeryA. Roy and D. J. Wu, Function-hiding inner product encryption is practical, International Conference on Security and Cryptography for Networks, 11035 (2018), 544-562.   Google Scholar

[112]

S. KimJ. Kim and J. H. Seo, A new approach to practical function-private inner product encryption, Theoret. Comput. Sci., 783 (2019), 22-40.  doi: 10.1016/j.tcs.2019.03.016.  Google Scholar

[113]

C.-C. LeeP.-S. Chung and M.-S. Hwang, A survey on attribute-based encryption schemes of access control in cloud environments, IJ Network Security, 15 (2013), 231-240.   Google Scholar

[114]

K. LeeS. G. ChoiD. H. LeeJ. H. Park and M. Yung, Self-updatable encryption: Time constrained access control with hidden attributes and better efficiency, International Conference on the Theory and Application of Cryptology and Information Security, 8269 (2013), 235-254.  doi: 10.1007/978-3-642-42033-7_13.  Google Scholar

[115]

A. LewkoT. OkamotoA. SahaiK. Takashima and B. Waters, Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6110 (2010), 62-91.  doi: 10.1007/978-3-642-13190-5_4.  Google Scholar

[116]

A. Lewko and B. Waters, New techniques for dual system encryption and fully secure HIBE with short ciphertexts, Theory of Cryptography Conference, 5978 (2010), 455-479.  doi: 10.1007/978-3-642-11799-2_27.  Google Scholar

[117]

A. Lewko and B. Waters, Decentralizing attribute-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6632 (2011), 568-588.  doi: 10.1007/978-3-642-20465-4_31.  Google Scholar

[118]

A. Lewko and B. Waters, Unbounded HIBE and attribute-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 6632 (2011), 547-567.  doi: 10.1007/978-3-642-20465-4_30.  Google Scholar

[119]

J. LiS. HuY. Zhang and J. Han, A decentralized multi-authority ciphertext-policy attribute-based encryption with mediated obfuscation, Soft Computing, 24 (2020), 1869-1882.  doi: 10.1007/s00500-019-04018-y.  Google Scholar

[120]

J. LiQ. Yu and Y. Zhang, Hierarchical attribute based encryption with continuous leakage-resilience, Information Sciences, 484 (2019), 113-134.   Google Scholar

[121]

B. Libert and R. Ţiţiu, Multi-client functional encryption for linear functions in the standard model from LWE, In International Conference on the Theory and Application of Cryptology and Information Security, (2019), 520–551. Google Scholar

[122]

H. LinZ. CaoX. Liang and J. Shao, Secure threshold multi authority attribute based encryption without a central authority, Inform. Sci., 180 (2010), 2618-2632.  doi: 10.1016/j.ins.2010.03.004.  Google Scholar

[123]

H. Lin, Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs, Annual International Cryptology Conference, 10401 (2017), 599-629.  doi: 10.1007/978-3-319-63688-7_20.  Google Scholar

[124]

H. Lin and S. Tessaro, Indistinguishability obfuscation from trilinear maps and block-wise local PRGs, Annual International Cryptology Conference, 10401 (2017), 630-660.   Google Scholar

[125]

W. LiuQ. HuangX. Chen and H. Li, Efficient functional encryption for inner product with simulation-based security, Cybersecurity, 4 (2021), 1-13.   Google Scholar

[126]

Z. Liu, Z. Cao and D. S. Wong, Blackbox traceable CP-ABE: How to catch people leaking their keys by selling decryption devices on ebay, In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, (2013), 475–486. doi: 10.1145/2508859.2516683.  Google Scholar

[127]

Z. Liu and D. S. Wong, Practical ciphertext-policy attribute-based encryption: Traitor tracing, revocation, and large universe, International Conference on Applied Cryptography and Network Security, 9092 (2015), 127-146.  doi: 10.1007/978-3-319-28166-7_7.  Google Scholar

[128]

Z. Liu and D. S. Wong, Traceable CP-ABE on prime order groups: Fully secure and fully collusion-resistant blackbox traceable, International Conference on Information and Communications Security, 9543 (2015), 109-124.  doi: 10.1007/978-3-319-29814-6_10.  Google Scholar

[129]

R. LongoC. Marcolla and M. Sala, Key-policy multi-authority attribute-based encryption, International Conference on Algebraic Informatics, 9270 (2015), 152-164.  doi: 10.1007/978-3-319-23021-4_14.  Google Scholar

[130]

R. Longo, C. Marcolla and M. Sala, Collaborative Multi-authority KP-ABE for Shorter Keys and Parameters, International Conference on Algebraic Informatics, 2017, https://eprint.iacr.org/2016/262. Google Scholar

[131]

F. Ma and M. Zhandry, The MMap strikes back: Obfuscation and new multilinear maps immune to CLT13 zeroizing attacks, Theory of Cryptography Conference, 11240 (2018), 513-543.   Google Scholar

[132]

X. MaX. Wang and D. Lin, Anonymous identity-based encryption with identity recovery, Australasian Conference on Information Security and Privacy, 10946 (2018), 360-375.  doi: 10.1007/978-3-319-93638-3_21.  Google Scholar

[133]

A. J. MenezesT. Okamoto and S. A. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Trans. Inform. Theory, 39 (1993), 1639-1646.  doi: 10.1109/18.259647.  Google Scholar

[134]

V. S. Miller, The Weil pairing, and its efficient calculation, J. Cryptology, 17 (2004), 235-261.  doi: 10.1007/s00145-004-0315-8.  Google Scholar

[135]

A. MiyajiM. Nakabayashi and S. Takano, New explicit conditions of elliptic curve traces for FR-reduction., IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 84 (2001), 1234-1243.   Google Scholar

[136]

S. MüllerS. Katzenbeisser and C. Eckert, Distributed attribute-based encryption, International Conference on Information Security and Cryptology, 5461 (2008), 20-36.  doi: 10.1007/978-3-642-00730-9_2.  Google Scholar

[137]

D. Naccache, Secure and practical identity-based encryption, IET Information Security, 1 (2007), 59-64.  doi: 10.1049/iet-ifs:20055097.  Google Scholar

[138]

M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux and C. Gunter, Controlled functional encryption, In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, (2014), 1280–1291. doi: 10.1145/2660267.2660291.  Google Scholar

[139]

J. NingZ. CaoX. DongL. Wei and X. Lin, Large universe ciphertext-policy attribute-based encryption with white-box traceability, European Symposium on Research in Computer Security, 8713 (2014), 55-72.  doi: 10.1007/978-3-319-11212-1_4.  Google Scholar

[140]

T. Okamoto and K. Takashima, Homomorphic encryption and signatures from vector decomposition, International Conference on Pairing-Based Cryptography, 5209 (2008), 57-74.  doi: 10.1007/978-3-540-85538-5_4.  Google Scholar

[141]

T. Okamoto and K. Takashima, Hierarchical predicate encryption for inner-products, International Conference on the Theory and Application of Cryptology and Information Security, 5912 (2009), 214-231.  doi: 10.1007/978-3-642-10366-7_13.  Google Scholar

[142]

T. Okamoto and K. Takashima, Fully secure functional encryption with general relations from the decisional linear assumption, Annual Cryptology Conference, 6223 (2010), 191-208.  doi: 10.1007/978-3-642-14623-7_11.  Google Scholar

[143]

T. Okamoto and K. Takashima, Adaptively attribute-hiding (hierarchical) inner product encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 7237 (2012), 591-608.  doi: 10.1007/978-3-642-29011-4_35.  Google Scholar

[144]

T. Okamoto and K. Takashima, Fully secure unbounded inner-product and attribute-based encryption, International Conference on the Theory and Application of Cryptology and Information Security, 7658 (2012), 349-366.  doi: 10.1007/978-3-642-34961-4_22.  Google Scholar

[145]

T. Okamoto and K. Takashima, Efficient (hierarchical) inner-product encryption tightly reduced from the decisional linear assumption, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96 (2013), 42-52.  doi: 10.1587/transfun.E96.A.42.  Google Scholar

[146]

A. O'Neill, Definitional Issues in Functional Encryption, Cryptology ePrint Archive, Report 2009/556, 2010, https://eprint.iacr.org/2010/556. Google Scholar

[147]

R. Ostrovsky, A. Sahai and B. Waters, Attribute-based encryption with non-monotonic access structures, In Proceedings of the 14th ACM Conference on Computer and Communications Security, (2007), 195–203. doi: 10.1145/1315245.1315270.  Google Scholar

[148]

D. PageN. P. Smart and F. Vercauteren, A comparison of MNT curves and supersingular curves, Appl. Algebra Engrg. Comm. Comput., 17 (2006), 379-392.  doi: 10.1007/s00200-006-0017-6.  Google Scholar

[149]

J. H. Park, Efficient hidden vector encryption for conjunctive queries on encrypted data, IEEE Transactions on Knowledge and Data Engineering, 23 (2010), 1483-1497.  doi: 10.1109/TKDE.2010.206.  Google Scholar

[150]

J. H. Park, Inner-product encryption under standard assumptions, Des. Codes Cryptogr., 58 (2011), 235-257.  doi: 10.1007/s10623-010-9405-9.  Google Scholar

[151]

J. H. ParkK. LeeW. Susilo and D. H. Lee, Fully secure hidden vector encryption under standard assumptions, Inform. Sci., 232 (2013), 188-207.  doi: 10.1016/j.ins.2012.12.034.  Google Scholar

[152]

J. Patarin and L. Goubin, Trapdoor one-way permutations and multivariate polynomials, International Conference on Information and Communications Security, 1334 (1997), 356-368.  doi: 10.1007/BFb0028491.  Google Scholar

[153]

C. Peikert, Bonsai Trees (or, Arboriculture in Lattice-Based Cryptography), Cryptology ePrint Archive, Report 2009/359, 2009, https://eprint.iacr.org/2009/359. Google Scholar

[154]

D. H. Phan and V. C. Trinh, Identity-based trace and revoke schemes, International Conference on Provable Security, 6980 (2011), 204-221.  doi: 10.1007/978-3-642-24316-5_15.  Google Scholar

[155]

Z. Qiao, S. Liang, S. Davis and H. Jiang, Survey of attribute based encryption, In 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), (2014), 1–6. doi: 10.1109/SNPD.2014.6888687.  Google Scholar

[156]

Y. RahulamathavanS. VeluruJ. HanF. LiM. Rajarajan and R. Lu, User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption, IEEE Trans. Comput., 65 (2016), 2939-2946.  doi: 10.1109/TC.2015.2510646.  Google Scholar

[157]

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM (JACM), 56 (2009), 1-40.  doi: 10.1145/1568318.1568324.  Google Scholar

[158]

K. Dey, S. K. Debnath, S. Mesnager and N. Kundu, Post-quantum secure inner product functional encryption using multivariate public key cryptography, Mediterr. J. Math., 18 (2021). doi: 10.1007/s00009-021-01841-2.  Google Scholar

[159]

A. Sahai and H. Seyalioglu, Worry-free encryption: Functional encryption with public keys, In Proceedings of the 17th ACM Conference on Computer and CVommunications Security, (2010), 463–472. doi: 10.1145/1866307.1866359.  Google Scholar

[160]

A. Sahai and B. Waters, Fuzzy identity-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 3494 (2005), 457-473.  doi: 10.1007/11426639_27.  Google Scholar

[161]

S. SedghiP. V. LiesdonkS. NikovaP. Hartel and W. Jonker, Searching keywords with wildcan on encrypted data, International Conference on Security and Cryptography for Networks, 6280 (2010), 138-153.  doi: 10.1007/978-3-642-15317-4_10.  Google Scholar

[162]

A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[163]

A. Shamir, Identity-based cryptosystems and signature schemes, Workshop on the Theory and Application of Cryptographic Techniques, 196 (1984), 47-53.  doi: 10.1007/3-540-39568-7_5.  Google Scholar

[164]

E. ShenE. Shi and B. Waters, Predicate privacy in encryption systems, Theory of Cryptography Conference, 5444 (2009), 457-473.  doi: 10.1007/978-3-642-00457-5_27.  Google Scholar

[165]

E. Shi and B. Waters, Delegating capabilities in predicate encryption systems, In International Colloquium on Automata, Languages, and Programming, $ \mathtt 5126 $ (2008), 560–578. doi: 10.1007/978-3-540-70583-3_46.  Google Scholar

[166]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, 41 (1999), 303-332.  doi: 10.1137/S0036144598347011.  Google Scholar

[167]

J. H. Silverman, The Arithmetic of Elliptic Curves, 2$^nd$ edition, Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-09494-6.  Google Scholar

[168]

N. SoroushV. IovinoA. RialP. B. Roenne and P. Y. Ryan, Verifiable inner product encryption scheme, IACR International Conference on Public-Key Cryptography, 12110 (2020), 65-94.  doi: 10.1007/978-3-030-45374-9_3.  Google Scholar

[169]

K. Takashima, Efficiently computable distortion maps for supersingular curves, International Algorithmic Number Theory Symposium, 5011 (2008), 88-101.  doi: 10.1007/978-3-540-79456-1_5.  Google Scholar

[170]

C. Tang, D. Pei, Z. Liu and Y. He, Non-Interactive and Information-Theoretic Secure Publicly Verifiable Secret Sharing, Cryptology ePrint Archive, Report 2004/201, 2004, https://eprint.iacr.org/2004/201. Google Scholar

[171]

Q. Tang and D. Ji, Verifiable attribute-based encryption, IJ Network Security, 10 (2010), 114-120.   Google Scholar

[172]

B. C. Tea, M. R. K. Ariffin and M. A. Asbullah, Identity-based encryption schemes–A review, J. Multidisciplinary Engineering Science and Technology (JMEST), 6 (2019). Google Scholar

[173]

J. TomidaM. Abe and T. Okamoto, Efficient functional encryption for inner-product values with full-hiding security, International Conference on Information Security, 9866 (2016), 408-425.  doi: 10.1007/978-3-319-45871-7_24.  Google Scholar

[174]

J. Tomida and K. Takashima, Unbounded inner product functional encryption from bilinear maps, Jpn. J. Ind. Appl. Math., 37 (2020), 723-779.  doi: 10.1007/s13160-020-00419-x.  Google Scholar

[175]

T. van de KampA. Peter and W. Jonker, A multi-authority approach to various predicate encryption types, Des. Codes Cryptogr., 88 (2020), 363-390.  doi: 10.1007/s10623-019-00686-x.  Google Scholar

[176]

G. Wang, Q. Liu and J. Wu, Hierarchical attribute-based encryption for fine-grained access control in cloud storage services, In Proceedings of the 17th ACM Conference on Computer and Communications Security, (2010), 735–737. doi: 10.1145/1866307.1866414.  Google Scholar

[177]

B. Waters, Efficient identity-based encryption without random oracles, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 3494 (2005), 114-127.  doi: 10.1007/11426639_7.  Google Scholar

[178]

B. Waters, Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions, Annual International Cryptology Conference, 5677 (2009), 619-636.  doi: 10.1007/978-3-642-03356-8_36.  Google Scholar

[179]

B. Waters, Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization, International Workshop on Public Key Cryptography, 6571 (2011), 53-70.  doi: 10.1007/978-3-642-19379-8_4.  Google Scholar

[180]

H. Wee, Attribute-hiding predicate encryption in bilinear groups, revisited, Theory of Cryptography Conference, 10677 (2017), 206-233.  doi: 10.1007/978-3-319-70500-2_8.  Google Scholar

[181]

H. Wee, Functional encryption for quadratic functions from $k$-Lin, revisited, Theory of Cryptography Conference, 12550 (2020), 210-228.  doi: 10.1007/978-3-030-64375-1_8.  Google Scholar

[182]

P. Xu, J. Li, W. Wang and H. Jin, Anonymous identity-based broadcast encryption with constant decryption complexity and strong security, In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, (2016), 223–233. doi: 10.1145/2897845.2897853.  Google Scholar

[183]

Y. YangX. ChenH. Chen and X. Du, Improving privacy and security in decentralizing multi-authority attribute-based encryption in cloud computing, IEEE Access, 6 (2018), 18009-18021.  doi: 10.1109/ACCESS.2018.2820182.  Google Scholar

[184]

M. ZhangB. Yang and T. Takagi, Bounded leakage-resilient functional encryption with hidden vector predicate, Computer Journal, 56 (2013), 464-477.  doi: 10.1093/comjnl/bxs133.  Google Scholar

[185]

Y. ZhangR. H. DengS. XuJ. SunQ. Li and D. Zheng, Attribute-based encryption for cloud computing access control: A survey, ACM Computing Surveys (CSUR), 53 (2020), 1-41.   Google Scholar

[186]

Q. Zhao, Q. Zeng and X. Liu, Improved construction for inner product functional encryption, Security and Communication Networks, 2018 (2018). doi: 10.1155/2018/6561418.  Google Scholar

[187]

Q. ZhaoQ. ZengX. Liu and H. Xu, Simulation-based security of function-hiding inner product encryption, Sci. China Inf. Sci., 61 (2018), 1-3.  doi: 10.1007/s11432-017-9224-9.  Google Scholar

[1]

Vikas Srivastava, Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Saibal Kumar Pal. A multivariate identity-based broadcast encryption with applications to the internet of things. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021050

[2]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[3]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[4]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[5]

Angsuman Das, Avishek Adhikari, Kouichi Sakurai. Plaintext checkable encryption with designated checker. Advances in Mathematics of Communications, 2015, 9 (1) : 37-53. doi: 10.3934/amc.2015.9.37

[6]

Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, Palash Sarkar. ${\sf {FAST}}$: Disk encryption and beyond. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020108

[7]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1327-1340. doi: 10.3934/dcdss.2019091

[8]

Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021053

[9]

Rainer Steinwandt, Adriana Suárez Corona. Attribute-based group key establishment. Advances in Mathematics of Communications, 2010, 4 (3) : 381-398. doi: 10.3934/amc.2010.4.381

[10]

David Galindo, Javier Herranz, Eike Kiltz. On the generic construction of identity-based signatures with additional properties. Advances in Mathematics of Communications, 2010, 4 (4) : 453-483. doi: 10.3934/amc.2010.4.453

[11]

Sikhar Patranabis, Debdeep Mukhopadhyay. Identity-based key aggregate cryptosystem from multilinear maps. Advances in Mathematics of Communications, 2019, 13 (4) : 759-778. doi: 10.3934/amc.2019044

[12]

Chunqiang Hu, Jiguo Yu, Xiuzhen Cheng, Zhi Tian, Kemal Akkaya, and Limin Sun. CP_ABSC: An attribute-based signcryption scheme to secure multicast communications in smart grids. Mathematical Foundations of Computing, 2018, 1 (1) : 77-100. doi: 10.3934/mfc.2018005

[13]

Weidong Bao, Haoran Ji, Xiaomin Zhu, Ji Wang, Wenhua Xiao, Jianhong Wu. ACO-based solution for computation offloading in mobile cloud computing. Big Data & Information Analytics, 2016, 1 (1) : 1-13. doi: 10.3934/bdia.2016.1.1

[14]

Zoltán Faigl, Miklós Telek. Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures. Journal of Industrial & Management Optimization, 2015, 11 (3) : 887-920. doi: 10.3934/jimo.2015.11.887

[15]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[16]

Mahdi Jalili. EEG-based functional brain networks: Hemispheric differences in males and females. Networks & Heterogeneous Media, 2015, 10 (1) : 223-232. doi: 10.3934/nhm.2015.10.223

[17]

Vladimir Srochko, Vladimir Antonik, Elena Aksenyushkina. Sufficient optimality conditions for extremal controls based on functional increment formulas. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 191-199. doi: 10.3934/naco.2017013

[18]

Jun Fan, Fusheng Lv, Lei Shi. An RKHS approach to estimate individualized treatment rules based on functional predictors. Mathematical Foundations of Computing, 2019, 2 (2) : 169-181. doi: 10.3934/mfc.2019012

[19]

Xuemei Zhang, Malin Song, Guangdong Liu. Service product pricing strategies based on time-sensitive customer choice behavior. Journal of Industrial & Management Optimization, 2017, 13 (1) : 297-312. doi: 10.3934/jimo.2016018

[20]

Zhijie Sasha Dong, Wei Chen, Qing Zhao, Jingquan Li. Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects. Journal of Industrial & Management Optimization, 2020, 16 (2) : 725-739. doi: 10.3934/jimo.2018175

2020 Impact Factor: 0.935

Article outline

[Back to Top]