[1]
|
C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phy. Rev. Lett., 68 (1992), 3121-3124.
doi: 10.1103/PhysRevLett.68.3121.
|
[2]
|
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70 (1993), 1895-1899.
doi: 10.1103/PhysRevLett.70.1895.
|
[3]
|
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, Experimental quantum teleportation, Nature, 390 (1997), 575-579.
|
[4]
|
G. Chen, X. Zhang and Y. Guo, New results for 2-uniform states based on irredundant orthogonal arrays, Quantum Inf. Process., 20 (2021), 43.
doi: 10.1007/s11128-020-02978-x.
|
[5]
|
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996.
doi: 10.1201/9781420049954.
|
[6]
|
A. Dey and R. Mukerjee, Fractional Factorial Plans, John Wiley & Sons, Inc, New York, NY, 1999.
doi: 10.1002/9780470316986.
|
[7]
|
A. K. Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett., 67 (1991), 661-663.
doi: 10.1103/PhysRevLett.67.661.
|
[8]
|
P. Facchi, Multipartite entanglement in qubit systems, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 20 (2009), 25-67.
doi: 10.4171/RLM/532.
|
[9]
|
P. Facchi, G. Florio, G. Parisi and S. Pascazio, Maximally multipartite entangled states, Phys. Rev. A., 77 (2008), 060304.
doi: 10.1103/PhysRevA.77.060304.
|
[10]
|
K. Q. Feng, L. F. Jin, C. P. Xing and C. Yuan, Multipartite entangled states, symmetric matrices and error-correcting codes, IEEE Trans. Inform. Theory, 63 (2017), 5618-5627.
doi: 10.1109/tit.2017.2700866.
|
[11]
|
G. Ge, On (g, 4;1)-difference matrices, Discrete Math., 301 (2005), 164-174.
doi: 10.1016/j.disc.2005.07.004.
|
[12]
|
D. Goyeneche, J. Bielawski and K. Życzkowski, Multipartite entanglement in heterogeneous systems, Phys. Rev. A., 94 (2016), 012346.
doi: 10.1103/PhysRevA.94.012346.
|
[13]
|
D. Goyeneche, Z. Raissi, S. D. Martino and K. Życzkowski, Entanglement and quantum combinatorial designs, Phys. Rev. A., 97 (2018), 062326.
doi: 10.1103/PhysRevA.97.062326.
|
[14]
|
D. Goyeneche and K. Życzkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A., 90 (2014), 022316.
doi: 10.1103/PhysRevA.90.022316.
|
[15]
|
M. Grassl and M. Rötteler, Quantum MDS codes over small fields,, IEEE International Symposium on Information Theory (ISIT), (2015), 1104–1108.
doi: 10.1109/ISIT.2015.7282626.
|
[16]
|
A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer Series in Statistics. Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1478-6.
|
[17]
|
W. Helwig, Absolutely maximally entangled qudit graph states, preprint, arXiv: 1306.2879v1.
|
[18]
|
W. Helwig and W. Cui, Absolutely maximally entangled states: existence and applications, preprint, arXiv: 1306.2536.
|
[19]
|
W. Helwig, W. Cui, J. I. Latorre, A. Riera and H. K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev. A., 86 (2012), 052335.
doi: 10.1103/PhysRevA.86.052335.
|
[20]
|
A. Higuchi and A. Sudbery, How entangled can two couples get?, Phys. Lett. A, 273 (2000), 213-217.
doi: 10.1016/S0375-9601(00)00480-1.
|
[21]
|
R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev. Modern Phys, 81 (2009), 865-942.
doi: 10.1103/RevModPhys.81.865.
|
[22]
|
P. Horodecki, Ł. Rudnicki and K. Życzkowski, Five open problems in quantum information, prepint, arXiv: 2002.03233v1.
|
[23]
|
F. Huber, O. Gühne and J. Siewert, Absolutely maximally entangled states of seven qubits do not exist, Phys. Rev. Lett., 118 (2017), 200502.
doi: 10.1103/PhysRevLett.118.200502.
|
[24]
|
L. Ji and J. Yin, Constructions of new orthogonal arrays and covering arrays of strength three, J. Combi. Theory, Ser. A, 117 (2010), 236-247.
doi: 10.1016/j.jcta.2009.06.002.
|
[25]
|
R. Jozsa and N. Linden, On the role of entanglement in quantum computational speed-up, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 2011-2032.
doi: 10.1098/rspa.2002.1097.
|
[26]
|
M. S. Li and Y. L. Wang, $k$-uniform quantum states arising from orthogonal arrays, Phy. Rev. A., 99 (2019), 042332.
|
[27]
|
H. K. Lo, M. Curty and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108 (2012), 130503.
doi: 10.1103/PhysRevLett.108.130503.
|
[28]
|
S. Q. Pang, X. Zhang, J. Du and T. Wang, Multipartite entanglement states of higher uniformity, J. Phys. A: Math. Theor., 54 (2021), 015305.
doi: 10.1088/1751-8121/abc9a4.
|
[29]
|
S. Q. Pang, X. Zhang, S. M. Fei and Z. J. Zheng, Quantum $k$-uniform states for heterogeneous systems from irredundant mixed orthogonal arrays, Quantum Inf. Process., 20 (2021), 156.
doi: 10.1007/s11128-021-03040-0.
|
[30]
|
S. Q. Pang, X. Zhang, X. Lin and Q. J. Zhang, Two and three-uniform states from irredundant orthogonal arrays, npj Quantum Inf., 5 (2019), 1-10.
doi: 10.1038/s41534-019-0165-8.
|
[31]
|
F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, J. High Energy Phys., 6 (2015), 149.
doi: 10.1007/JHEP06(2015)149.
|
[32]
|
E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, 45 (1999), 1827-1832.
doi: 10.1109/18.782103.
|
[33]
|
Z. Raissi, A. Teixido, C. Gogolin and A. Acín, Constructions of $k$-uniform and absolutely maximally entangled states beyond maximum distance codes, Physical Review Research, 2 (2020), 033411.
doi: 10.1103/PhysRevResearch.2.033411.
|
[34]
|
C. R. Rao, Factorial experiments derivable from combinational arrangements of arrays, Suppl. J. Roy. Statist. Soc., 9 (1947), 128-139.
doi: 10.2307/2983576.
|
[35]
|
S. A. Rather, A. Burchardt, W. Bruzda, G. R.-Mieldzioć, A. Lakshminarayan and K. Życzkowski, Thirty-six entangled officers of Euler, preprint, arXiv: 2104.05122v1.
|
[36]
|
M. Riebe, H. Haffner, F. C. Roos and et al, Deterministic quantum teleportation with atoms, Nature, 429 (2004), 734-737.
doi: 10.1038/nature02570.
|
[37]
|
C. F. Roos, M. Riebe, H. Haffner and et al, Control and measurement of three-qubit entangled states, Science, 304 (2004), 1478-1480.
doi: 10.1126/science.1097522.
|
[38]
|
A. J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions, Phys. Rev. A., 69 (2004), 052330.
doi: 10.1103/PhysRevA.69.052330.
|
[39]
|
F. Shi, Y. Shen, L. Chen and X. Zhang, Constructions of $k$-uniform states from mixed orthogonal arrays, preprint, arXiv: 2006.04086v1.
|
[40]
|
D. R. Stinson, Ideal ramp schemes and related combinatorial objects, Discrete Math., 341 (2018), 299-307.
doi: 10.1016/j.disc.2017.08.041.
|
[41]
|
C. Suen, A. Das and A. Dey, On the construction of asymmetric orthogonal arrays, Statistica Sinica, 11 (2001), 241-260.
|
[42]
|
Y. J. Zang, G. Z. Chen, K. J. Chen and Z. H. Tian, Further results on $2$-uniform states arising from irredundant orthogonal arrays, Advances in Mathematics of Communications, 2020.
doi: 10.3934/amc.2020109.
|
[43]
|
Y. J. Zang, H. J. Zuo and Z. H. Tian, 3-uniform states and orthogonal arrays of strength 3, Int. J. Quantum Inf., 17 (2019), 1950003.
doi: 10.1142/S0219749919500035.
|
[44]
|
X. W. Zha, I. Ahmed and Y. P. Zhang, 3-uniform states and orthognal arrays, Results Phys., 6 (2016), 26-28.
|
[45]
|
X. W. Zha, C. Z. Yuan and Y. P. Zhang, Generalized criterion for a maximally multi-qubit entangled states, Laser Phys. Lett., 10 (2013), 045201.
doi: 10.1088/1612-2011/10/4/045201.
|
[46]
|
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel and J. Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature, 430 (2004), 54-58.
doi: 10.1038/nature02643.
|