Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
One of the fundamental problems in coding theory is to find $ n_q(k,d) $, the minimum length $ n $ for which a linear code of length $ n $, dimension $ k $, and the minimum weight $ d $ over the field of order $ q $ exists. The problem of determining the values of $ n_q(k,d) $ is known as the optimal linear codes problem. Using the geometric methods through projective geometry and a new extension theorem given by Kanda (2020), we determine $ n_3(6,d) $ for some values of $ d $ by proving the nonexistence of linear codes with certain parameters.
Citation: |
Table 1.
Table 2.
Table 3.
40 | 27 | 22 | 9 | 9 |
31 | 45 | 13 | 18 | 9 |
40 | 36 | 16 | 12 | 12 |
40 | 45 | 10 | 15 | 15 |
49 | 36 | 13 | 9 | 18 |
Table 4.
Table 5.
Table 6.
121 | 81 | 67 | 27 | 27 |
94 | 135 | 40 | 54 | 27 |
121 | 108 | 49 | 36 | 36 |
112 | 126 | 40 | 45 | 36 |
130 | 117 | 40 | 36 | 45 |
121 | 135 | 31 | 45 | 45 |
148 | 108 | 40 | 27 | 54 |
Table 7. The spectra of some ternary linear codes of dimension 4 [31]
parameters | possible spectra |
Table 8. The spectra of some ternary linear codes of dimension 5
parameters | possible spectra | reference |
[31] | ||
[31] | ||
[2] | ||
[2] | ||
[7] | ||
[27] | ||
[30] | ||
[5] | ||
[5] | ||
[5] | ||
[6] | ||
[26] | ||
[32] |
Table 9.
All solutions of (15) with
solution | line in |
# | ||
0 | 56 | |||
46 | ||||
38 | ||||
36 | ||||
34 | ||||
31 | ||||
30 | ||||
28 | ||||
26 | ||||
22 | ||||
1 | 28 | |||
22 | ||||
17 | ||||
16 | ||||
13 | ||||
2 | 10 | |||
7 | ||||
3 | 6 | |||
2 | ||||
1 | ||||
4 | 0 |
Table 10.
All solutions of (25) with
solution | line in |
# | ||
8 | 198 | |||
135 | ||||
9 | 183 | |||
111 | ||||
108 | ||||
13 | 57 | |||
39 | ||||
30 | ||||
16 | 3 | |||
17 | 0 | |||
18 | 0 |
Table 11.
Values and bounds for
1 | 6 | 6 | 61 | 94 | 96 | 121 | 184 | 185 |
2 | 7 | 7 | 62 | 95 | 97 | 122 | 185 | 186 |
3 | 8 | 9 | 63 | 96 | 98 | 123 | 186 | 187 |
4 | 10 | 10 | 64 | 99 | 100-101 | 124 | 188 | 189 |
5 | 11 | 11 | 65 | 100 | 101-102 | 125 | 189 | 190 |
6 | 12 | 12 | 66 | 101 | 103 | 126 | 190 | 191 |
7 | 14 | 15 | 67 | 103 | 105 | 127 | 193 | 194-195 |
8 | 15 | 17 | 68 | 104 | 106 | 128 | 194 | 195-196 |
9 | 16 | 18 | 69 | 105 | 107 | 129 | 195 | 196-197 |
10 | 19 | 20 | 70 | 107 | 109 | 130 | 197 | 199 |
11 | 20 | 21 | 71 | 108 | 110 | 131 | 198 | 200 |
12 | 21 | 22 | 72 | 109 | 111 | 132 | 199 | 201 |
13 | 23 | 24 | 73 | 112 | 114 | 133 | 201 | 203 |
14 | 24 | 25 | 74 | 113 | 115 | 134 | 202 | 204 |
15 | 25 | 26 | 75 | 114 | 116 | 135 | 203 | 205 |
16 | 27 | 29 | 76 | 116 | 118 | 136 | 207 | 208-209 |
17 | 28 | 30 | 77 | 117 | 119 | 137 | 208 | 209-210 |
18 | 29 | 31 | 78 | 118 | 120 | 138 | 209 | 210-211 |
19 | 32 | 33-34 | 79 | 120 | 122 | 139 | 211 | 212-213 |
20 | 33 | 34-35 | 80 | 121 | 123 | 140 | 212 | 213-214 |
21 | 34 | 36 | 81 | 122 | 124 | 141 | 213 | 214-215 |
22 | 36 | 38 | 82 | 127 | 127-128 | 142 | 215 | 216-217 |
23 | 37 | 39 | 83 | 128 | 128-129 | 143 | 216 | 217-218 |
24 | 38 | 40 | 84 | 129 | 129-130 | 144 | 217 | 218-219 |
25 | 40 | 42 | 85 | 131 | 131-132 | 145 | 220 | 221-222 |
26 | 41 | 43 | 86 | 132 | 133 | 146 | 221 | 222-223 |
27 | 42 | 44 | 87 | 133 | 134 | 147 | 222 | 223-224 |
28 | 46 | 46-47 | 88 | 135 | 136 | 148 | 224 | 225-226 |
29 | 47 | 48 | 89 | 136 | 137 | 149 | 225 | 227 |
30 | 48 | 49 | 90 | 137 | 138 | 150 | 226 | 228 |
31 | 50 | 51 | 91 | 140 | 140-142 | 151 | 228 | 230 |
32 | 51 | 52 | 92 | 141 | 141-143 | 152 | 229 | 231 |
33 | 52 | 53 | 93 | 142 | 143-144 | 153 | 230 | 232 |
34 | 54 | 54 | 94 | 144 | 145-146 | 154 | 233 | 234 |
35 | 55 | 55 | 95 | 145 | 146-147 | 155 | 234 | 235 |
36 | 56 | 56 | 96 | 146 | 147-148 | 156 | 235 | 236 |
[1] |
I. G. Bouyukliev, What is Q-Extension?, Serdica J. Computing, 1 (2007), 115-130.
![]() ![]() |
[2] |
I. Bouyukliev and J. Simonis, Some new results for optimal ternary linear codes, IEEE Trans. Inform. Theory, 48 (2002), 981-985.
doi: 10.1109/18.992814.![]() ![]() ![]() |
[3] |
R. Daskalov and E. Metodieva, The nonexistence of ternary $[284, 6,188]$ codes, Probl. Inform. Trans., 40 (2004), 135-146.
doi: 10.1023/B:PRIT.0000043927.19508.8b.![]() ![]() ![]() |
[4] |
R. Daskalov and E. Metodieva, The nonexistence of ternary [105, 6, 68] and [230, 6,152] codes, Discrete Math., 286 (2004), 225-232.
doi: 10.1016/j.disc.2004.06.002.![]() ![]() ![]() |
[5] |
N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math., 116 (1993), 229-268.
doi: 10.1016/0012-365X(93)90404-H.![]() ![]() ![]() |
[6] |
N. Hamada and T. Helleseth, The uniqueness of [87, 5, 57;3] codes and the nonexistence of [258, 6,171;3] codes, J. Statist. Plann. Inference, 56 (1996), 105-127.
doi: 10.1016/S0378-3758(96)00013-4.![]() ![]() ![]() |
[7] |
R. Hill, Caps and codes, Discrete Math., 22 (1978), 111-137.
doi: 10.1016/0012-365X(78)90120-6.![]() ![]() ![]() |
[8] |
R. Hill, Optimal linear codes, Cryptography and Coding, 33 (1992), 75-104.
![]() ![]() |
[9] |
R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr., 17 (1999), 151-157.
doi: 10.1023/A:1008319024396.![]() ![]() ![]() |
[10] |
R. Hill and P. Lizak, Extensions of linear codes, Proc. IEEE Int. Symposium on Inform. Theory, (1995), 345.
doi: 10.1109/ISIT.1995.550332.![]() ![]() |
[11] |
R. Hill and D. E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr., 2 (1992), 137-157.
doi: 10.1007/BF00124893.![]() ![]() ![]() |
[12] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[13] |
C. M. Jones, Optimal Ternary Linear Codes, PhD thesis, University of Salford, 2000.
![]() |
[14] |
H. Kanda, A new extension theorem for ternary linear codes and its application, Finite Fields Appl., 67 (2020), 101711.
doi: 10.1016/j.ffa.2020.101711.![]() ![]() ![]() |
[15] |
K. Kumegawa, T. Okazaki and T. Maruta, On the minimum length of linear codes over the field of 9 elements, Electron. J. Combin., 24 (2017), #P1.50.
doi: 10.37236/6394.![]() ![]() ![]() |
[16] |
I. N. Landjev, The nonexistence of some optimal ternary linear codes of dimension five, Des. Codes Cryptogr., 15 (1998), 245-258.
doi: 10.1023/A:1008317124941.![]() ![]() ![]() |
[17] |
I. N. Landjev and T. Maruta, On the minimum length of quaternary linear codes of dimension five, Discrete Math., 202 (1999), 145-161.
doi: 10.1016/S0012-365X(98)00354-9.![]() ![]() ![]() |
[18] |
I. Landgev, T. Maruta and R. Hill, On the nonexistence of quaternary $[51, 4, 37]$ codes, Finite Fields Appl., 2 (1996), 96-110.
doi: 10.1006/ffta.1996.0007.![]() ![]() ![]() |
[19] |
I. Landjev and P. Vandendriessche, A study of (xvt; xvt−1)-minihypers in PG(t, q), J. Combin. Theory Ser. A, 119 (2012), 1123-1131.
doi: 10.1016/j.jcta.2012.02.009.![]() ![]() ![]() |
[20] |
T. Maruta, On the achievement of the Griesmer bound, Des. Codes Cryptogr., 12 (1997), 83-87.
doi: 10.1023/A:1008250010928.![]() ![]() ![]() |
[21] |
T. Maruta, On the nonexistence of $q$-ary linear codes of dimension five, Des. Codes Cryptogr., 22 (2001), 165-177.
doi: 10.1023/A:1008317022638.![]() ![]() ![]() |
[22] |
T. Maruta, The nonexistence of some ternary linear codes of dimension 6, Discrete Math., 288 (2004), 125-133.
doi: 10.1016/j.disc.2004.07.003.![]() ![]() ![]() |
[23] |
T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr., 35 (2005), 175-190.
doi: 10.1007/s10623-005-6400-7.![]() ![]() ![]() |
[24] |
T. Maruta, Griesmer bound for linear codes over finite fields, Available from: http://mars39.lomo.jp/opu/griesmer.htm.
![]() |
[25] |
T. Maruta and K. Okamoto, Some improvements to the extendability of ternary linear codes, Finite Fields Appl., 13 (2007), 259-280.
doi: 10.1016/j.ffa.2005.09.005.![]() ![]() ![]() |
[26] |
T. Maruta and Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5 (2011), 505-520.
doi: 10.3934/amc.2011.5.505.![]() ![]() ![]() |
[27] |
T. Maruta and Y. Oya, On the minimum length of ternary linear codes, Des. Codes Cryptogr., 68 (2013), 407-425.
doi: 10.1007/s10623-011-9593-y.![]() ![]() ![]() |
[28] |
T. Sawashima and T. Maruta, Nonexistence of some ternary linear codes, Discrete Math., 344 (2021), 112572.
doi: 10.1016/j.disc.2021.112572.![]() ![]() ![]() |
[29] |
M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math., 308 (2008), 842-854.
doi: 10.1016/j.disc.2007.07.044.![]() ![]() ![]() |
[30] |
M. van Eupen and R. Hill, An optimal ternary $[69, 5, 45]$ code and related codes, Des. Codes Cryptogr., 4 (1994), 271-282.
doi: 10.1007/BF01388456.![]() ![]() ![]() |
[31] |
M. van Eupen and P. Lisonêk, Classification of some optimal ternary linear codes of small length, Des. Codes Cryptogr., 10 (1997), 63-84.
doi: 10.1023/A:1008292320488.![]() ![]() ![]() |
[32] |
Y. Yoshida and T. Maruta, Ternary linear codes and quadrics, Electronic J. Combin., 16 (2009), #R9, 21pp.
doi: 10.37236/98.![]() ![]() ![]() |