[1]
|
S. Balaji, M. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan and P. Kumar, Erasure coding for distributed storage: An overview, Sci. China Inf. Sci., 61 (2018), 100301.
doi: 10.1007/s11432-018-9482-6.
|
[2]
|
J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, 3$^rd$ edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-6568-7.
|
[3]
|
R. Cramer, V. Daza, I. Gracia, J. J. Urroz, G. Leander, J. Marti-Farre and C. Padro, On codes, matroids and secure multiparty computation from linear secret sharing schemes, IEEE Trans. Inform. Theory, 54 (2008), 2644-2657.
doi: 10.1109/TIT.2008.921692.
|
[4]
|
S. T. Dougherty, S. Mesnager and P. Sole, Secret-sharing schemes based on self-dual codes, IEEE Information Theory Workshop, (2008), 338–342.
doi: 10.1109/ITW.2008.4578681.
|
[5]
|
Z. Du, C. Li and S. Mesnager, Constructions of self-orthogonal codes from hulls of BCH codes and their parameters, IEEE Trans. Inform. Theory, 66 (2020), 6774-6785.
doi: 10.1109/TIT.2020.2991635.
|
[6]
|
W. Fang and F.-W. Fu, New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes, IEEE Trans. Inform. Theory, 65 (2019), 5574-5579.
doi: 10.1109/TIT.2019.2916367.
|
[7]
|
W. Fang, F.-W. Fu, L. Li and S. Zhu, Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs, IEEE Trans. Inform. Theory, 66 (2020), 3527-3537.
doi: 10.1109/TIT.2019.2950245.
|
[8]
|
X. Fang, K. Lebed, H. Liu and J. Luo, New MDS self-dual codes over finite fields of odd characteristic, Des. Codes Cryptogr., 88 (2020), 1127-1138.
doi: 10.1007/s10623-020-00734-x.
|
[9]
|
X. Fang, M. Liu and J. Luo, New MDS Euclidean self-orthogonal codes, IEEE Trans. Inform. Theory, 67 (2021), 130-137.
doi: 10.1109/TIT.2020.3020986.
|
[10]
|
W. Fang, S.-T. Xia and F.-W. Fu, Construction of MDS Euclidean self-dual codes via two subsets, IEEE Trans. Inform. Theory, 67 (2021), 5005-5015.
doi: 10.1109/TIT.2021.3085768.
|
[11]
|
W. Fang, J. Zhang, S.-T. Xia and F.-W. Fu, A note on self-dual generalized Reed-Solomon codes, preprint, arXiv: 2005.11732 [cs.IT].
|
[12]
|
M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE Int. Symp. Inform. Theory, (2008), 1954–1957.
doi: 10.1109/ISIT.2008.4595330.
|
[13]
|
M. Harada and H. Kharaghani, Orthogonal designs, self-dual codes, and the Leech lattice, J. Combin. Des., 13 (2005), 184-194.
doi: 10.1002/jcd.20046.
|
[14]
|
M. Harada and H. Kharaghani, Orthogonal designs and MDS self-dual codes, Australas. J. Combin., 35 (2006), 57-67.
|
[15]
|
A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1478-6.
|
[16]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[17]
|
L. Jin and C. Xing, New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.
doi: 10.1109/TIT.2016.2645759.
|
[18]
|
K. Lebed, H. Liu and J. Luo, Construction of MDS self-dual codes over finite fields, Finite Fields Appl., 59 (2019), 199-207.
doi: 10.1016/j.ffa.2019.05.007.
|
[19]
|
R. Li, Z. Xu and X. Zhao, On the classification of binary optimal self-orthogonal codes, IEEE Trans. Inform. Theory, 54 (2008), 3778-3782.
doi: 10.1109/TIT.2008.926367.
|
[20]
|
G. Luo, X. Cao and X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Trans. Inform. Theory, 65 (2019), 2944-2952.
doi: 10.1109/TIT.2018.2874953.
|
[21]
|
H. Tong and X. Wang, New MDS Euclidean and Hermitian self-dual codes over finite fields, Adv. in Pure Math., 7 (2017), 325-333.
doi: 10.4236/apm.2017.75019.
|
[22]
|
H. Yan, A note on the constructions of MDS self-dual codes, Cryptogr. Commun., 11 (2019), 259-268.
doi: 10.1007/s12095-018-0288-3.
|
[23]
|
A. Zhang and K. Feng, A unified approach to construct MDS self-dual codes via Reed-Solomon codes, IEEE Trans. Inform. Theory, 66 (2020), 3650-3656.
doi: 10.1109/TIT.2020.2963975.
|
[24]
|
Z. Zhou, X. Li, C. Tang and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27.
doi: 10.1109/TIT.2018.2823704.
|