[1]
|
E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563.
|
[2]
|
C. Blondeau, A. Canteaut and P. Charpin, Differential properties of power functions, Int. J. Inf. Coding Theory., 1 (2010), 149-170.
doi: 10.1504/IJICOT.2010.032132.
|
[3]
|
C. Blondeau, A. Canteaut and P. Charpin, Differential properties of ${x\mapsto x^{2^{t}-1}}$, IEEE Trans. Inf. Theory., 57 (2011), 8127-8137.
doi: 10.1109/TIT.2011.2169129.
|
[4]
|
C. Blondeau and L. Perrin, More differentially 6-uniform power functions, Des. Codes Cryptogr., 73 (2014), 487-505.
doi: 10.1007/s10623-014-9948-2.
|
[5]
|
P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combinat. Theory. Ser. A., 108 (2004), 247-259.
doi: 10.1016/j.jcta.2004.07.001.
|
[6]
|
H. Dobbertin, Almost perfect nonlinear power functions on GF($2^n$): The Niho case, Inform. and Comput., 151 (1999), 57-72.
doi: 10.1006/inco.1998.2764.
|
[7]
|
J. Daemen and V. Rijmen, The Design of Rijndael: AES- The Advanced Encryption Standard, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04722-4.
|
[8]
|
H. Dobbertin, Almost perfect nonlinear power functions on GF($2^n$): The Welch case, IEEE Trans. Inf. Theory., 45 (1999), 1271-1275.
doi: 10.1109/18.761283.
|
[9]
|
T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.
doi: 10.1016/0012-365X(76)90100-X.
|
[10]
|
T. Helleseth, C. Rong and D. Sandberg, New families of almost perfect nonlinear power mappings, IEEE Trans. Inf. Theory., 45 (1999), 474-485.
doi: 10.1109/18.748997.
|
[11]
|
H. Hollmann and Q. Xiang, A proof of the Welch and Niho conjectures on cross-correlations of binary $m$-sequences, Finite Fields Appl., 7 (2001), 253-286.
doi: 10.1006/ffta.2000.0281.
|
[12]
|
N. Li, T. Helleseth, A. Kholosha and X. Tang, On the walsh transform of a class of functions from Niho exponents, IEEE Trans. Inf. Theory., 59 (2013), 4662-4667.
doi: 10.1109/TIT.2013.2252053.
|
[13]
|
N. Li, Y. Wu, X. Zeng and X. Tang, On the differential spectrum of a class of power functions over finite fields, Computer Science, 2020, arXiv: 2012.04316v1.
|
[14]
|
N. Li and X. Zeng, A survey on the applications of Niho exponents, Cryptogr. Commun., 11 (2019), 509-548.
doi: 10.1007/s12095-018-0305-6.
|
[15]
|
Y. Niho, Multivalued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequence, PhD Thesis, Univ. of Southern California, Los Angle, 1972.
|
[16]
|
K. Nyberg, Differentially uniform mappings for cryptography, Advances in Cryptology–EUROCRYPT'93, 765 (1993), 55-64.
doi: 10.1007/3-540-48285-7_6.
|
[17]
|
A. Pott, Almost perfect and planar functions, Des. Codes Cryptogr., 78 (2016), 141-195.
doi: 10.1007/s10623-015-0151-x.
|
[18]
|
M. Xiong, N. Li, Z. Zhou and C. Ding, Weight distribution of cyclic codes with arbitrary number of generalized Niho type zeroes, Des. Codes Cryptogr., 78 (2016), 713-730.
doi: 10.1007/s10623-014-0027-5.
|
[19]
|
M. Xiong and H. Yan, A note on the differential spectrum of a 4-uniform power function, Finite Fields and Appl., 48 (2017), 117-125.
doi: 10.1016/j.ffa.2017.07.008.
|
[20]
|
M. Xiong, H. Yan and P. Yuan, On a conjecture of differentially 8-uniform power function, Des. Codes Cryptogr., 86 (2018), 1601-1621.
doi: 10.1007/s10623-017-0416-7.
|