[1]
|
S. Acevedo and H. Dietrich, Perfect sequences over the quaternions and (4n, 2, 4n, 2n)-relative difference sets in ${C_n \times Q_8}$, Cryptogr. Commun, 10 (2018), 357-368.
doi: 10.1007/s12095-017-0224-y.
|
[2]
|
S. Acevedo and T. Hall, Perfect sequences of unbounded lengths over the basic quaternions, Sequences and Their Applications – SETA 2012, 7280 (2012), 159-167.
doi: 10.1007/978-3-642-30615-0_15.
|
[3]
|
L. Bomer and M. Antweiler, Periodic complementary binary sequences, IEEE Trans. Inf. Theory, 36 (1990), 1487-1494.
doi: 10.1109/18.59954.
|
[4]
|
P. Borwein and R. Ferguson, A complete description of Golay pairs for lengths up to 100, Math. Comput, 73 (2004), 967-985.
doi: 10.1090/S0025-5718-03-01576-X.
|
[5]
|
C. Bright, I. Kotsireas and V. Ganesh, New infinite families of perfect quaternion sequences and Williamson sequences, IEEE Trans. Inform. Theory, 66 (2020), 7739-7751.
doi: 10.1109/TIT.2020.3016510.
|
[6]
|
C. Chen, Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM, IEEE Trans. Inform. Theory, 62 (2016), 7538-7545.
doi: 10.1109/TIT.2016.2613994.
|
[7]
|
R. Craigen, W. Holzmann and H. Kharaghani, Complex Golay sequences: Structure and applications, Discret. Math, 252 (2002), 73-89.
doi: 10.1016/S0012-365X(01)00162-5.
|
[8]
|
J. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380.
|
[9]
|
D. Doković and I. Kotsireas, Some new periodic Golay pairs, Numer. Algorithms, 69 (2015), 523-530.
doi: 10.1007/s11075-014-9910-4.
|
[10]
|
D. Doković, I. Kotsireas, R. Daniel and J. Sawada, Charm bracelets and their application to the construction of periodic Golay pairs, Discret. Appl. Math., 188 (2015), 32-40.
doi: 10.1016/j.dam.2015.03.001.
|
[11]
|
K. Feng, P. Shiue and Q. Xiang, On aperiodic and periodic complementary binary sequences, IEEE Trans. Inf. Theory, 45 (1999), 296-303.
doi: 10.1109/18.746823.
|
[12]
|
F. Fiedler, Small Golay sequences, Adv. Math. Commun, 7 (2013), 379-407.
doi: 10.3934/amc.2013.7.379.
|
[13]
|
R. Frank, Polyphase complementary codes, IEEE Trans. Inf. Theory, 26 (1980), 641-647.
doi: 10.1109/TIT.1980.1056272.
|
[14]
|
H. Ganapathy, D. Pados and G. Karystinos, New bounds and optimal binary signature sets-part I: Periodic total squared correlation, IEEE Trans. Commun, 59 (2011), 1123-1132.
|
[15]
|
S. Georgiou, S. Stylianou, K. Drosou and C. Koukouvinos, Construction of orthogonal and nearly orthogonal designs for computer experiments, Biometrika, 101 (2014), 741-747.
doi: 10.1093/biomet/asu021.
|
[16]
|
M. Golay, Static multislit spectrometry and its application to the panoramic display of infrared spectra$^*$, J. Opt. Soc. Am, 41 (1951), 468-472.
|
[17]
|
M. Golay, Complementary series, IRE Trans., 7 (1961), 82-87.
doi: 10.1109/tit.1961.1057620.
|
[18]
|
W. Holzmann and H. Kharaghani, A computer search for complex Golay sequences, Australas. J. Comb, 10 (1994), 251-258.
|
[19]
|
P. Kumari, J. Choi, N. Prelcic and R. Heath, IEEE802.11 ad-based radar: An approach to joint vehicular communication-radar system, IEEE Trans. Veh. Technol, 67 (2018), 3012-3027.
|
[20]
|
O. Kuznetsov, Perfect sequences over the real quaternions, 2009 Fourth International Workshop on Signal Design and its Applications in Communications, (2009), 8–11.
doi: 10.1109/IWSDA.2009.5346443.
|
[21]
|
M. Nazarathy, S. Newton, R. Giffard, D. Moberly, F. Sischka, W. Trutna and S. Foster, Real-time long range complementary correlation optical time domain reflectometer, J. Lightw. Technol, 7 (1989), 24-38.
|
[22]
|
K. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation, IEEE Trans. Inf. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512.
|
[23]
|
A. Pezeshki, A. Calderbank, W. Moran and S. Howard, Doppler resilient Golay complementary waveforms, IEEE Trans. Inf. Theory, 54 (2008), 4254-4266.
doi: 10.1109/TIT.2008.928292.
|
[24]
|
K. Schmidt, Complementary sets, generalized Reed-Muller codes, and power control for OFDM, IEEE Trans. Inf. Theory, 53 (2007), 808-814.
doi: 10.1109/TIT.2006.889723.
|
[25]
|
K. Schmidt, Sequences with small correlation, Des. Codes Cryptogr., 78 (2016), 237-267.
doi: 10.1007/s10623-015-0154-7.
|
[26]
|
P. Spasojevic and C. Georghiades, Complementary sequences for ISI channel estimation, IEEE Trans. Inf. Theory, 47 (2001), 1145-1152.
doi: 10.1109/18.915670.
|
[27]
|
C. Tseng and C. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-652.
doi: 10.1109/tit.1972.1054860.
|
[28]
|
R. Turyn, Synthesis of power efficient multitone signals with flat amplitude spectrum, J. Comb. Theory, Ser. A, 16 (1991), 313-333.
|
[29]
|
S. Wang and A. Abdi, MIMOISI channel estimation using uncorrelated Golay complementary sets of polyphase sequences, IEEE Trans. Veh. Technol, 56 (2007), 3024-3039.
|
[30]
|
G. Wang, A. Adhikary, Z. Zhou and Y. Yang, Generalized constructions of complementary sets of sequences of lengths non-power-of-two, IEEE Signal Process. Lett, 27 (2020), 136-140.
|
[31]
|
F. Zeng, X. Zeng, Z. Zhang and G. Xuan, Quaternary periodic complementary/z-complementary sequence sets based on interleaving technique and Gray mapping, Adv. Math. Commun, 6 (2012), 237-247.
doi: 10.3934/amc.2012.6.237.
|
[32]
|
Z. Zhou, J. Li, Y. Yang and S. Hu, Two constructions of quaternary periodic complementary pairs, IEEE Commun. Lett, 22 (2018), 2507-2510.
|