doi: 10.3934/amc.2021064
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials

1. 

Department of informatics, University of Bergen, Norway and LAGA, University of Paris 8, France

2. 

Delft University of Technology, The Netherlands and LAGA, University of Paris 8, France

* Corresponding author: Stjepan Picek

Received  June 2021 Revised  October 2021 Early access December 2021

Fund Project: The research of the first author is partially supported by the Trond Mohn Foundation

We derive necessary conditions related to the notions, in additive combinatorics, of Sidon sets and sum-free sets, on those exponents $ d\in {\mathbb Z}/(2^n-1){\mathbb Z} $, which are such that $ F(x) = x^d $ is an APN function over $ {\mathbb F}_{2^n} $ (which is an important cryptographic property). We study to what extent these new conditions may speed up the search for new APN exponents $ d $. We summarize all the necessary conditions that an exponent must satisfy for having a chance of being an APN, including the new conditions presented in this work. Next, we give results up to $ n = 48 $, providing the number of exponents satisfying all the conditions for a function to be APN.

We also show a new connection between APN exponents and Dickson polynomials: $ F(x) = x^d $ is APN if and only if the reciprocal polynomial of the Dickson polynomial of index $ d $ is an injective function from $ \{y\in {\Bbb F}_{2^n}^*; tr_n(y) = 0\} $ to $ {\Bbb F}_{2^n}\setminus \{1\} $. This also leads to a new and simple connection between Reversed Dickson polynomials and reciprocals of Dickson polynomials in characteristic 2 (which generalizes to every characteristic thanks to a small modification): the squared Reversed Dickson polynomial of some index and the reciprocal of the Dickson polynomial of the same index are equal.

Citation: Claude Carlet, Stjepan Picek. On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials. Advances in Mathematics of Communications, doi: 10.3934/amc.2021064
References:
[1]

L. Babai and V. T. Sós, Sidon sets in groups and induced subgraphs of cayley graphs, European J. Combin., 6 (1985), 101-114.  doi: 10.1016/S0195-6698(85)80001-9.  Google Scholar

[2]

T. Beth and C. Ding, On almost perfect nonlinear permutations, Advances in Cryptology–EUROCRYPT '93 (Lofthus, 1993), 765 (1993), 65-76.  doi: 10.1007/3-540-48285-7_7.  Google Scholar

[3] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, 2021.  doi: 10.1017/9781108606806.  Google Scholar
[4]

C. Carlet and S. Mesnager, On those multiplicative subgroups of ${\mathbb F}_{2^n}^*$ which are Sidon sets and/or sum-free sets, Journal of Algebraic Combinatorics, 2020. Google Scholar

[5]

S. D. Cohen and R. W. Matthews, A class of exceptional polynomials, Trans. Amer. Math. Soc., 345 (1994), 897-909.  doi: 10.1090/S0002-9947-1994-1272675-0.  Google Scholar

[6]

B. Green and I. Z. Ruzsa, Sum-free sets in abelian groups, Isr. J. Math., 147 (2005), 157-188.  doi: 10.1007/BF02785363.  Google Scholar

[7]

X. Hou, Private communication, June 2017. Google Scholar

[8]

X. HouG. L. MullenJ. A. Sellers and J. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl., 15 (2009), 748-773.  doi: 10.1016/j.ffa.2009.06.004.  Google Scholar

[9]

G. Kyureghyan, Special mappings of finite fields, Finite Fields and Their Applications, Radon Ser. Comput. Appl. Math., 11 (2013), 117-144.   Google Scholar

[10]

K. Nyberg, Differentially uniform mappings for cryptography, Advances in Cryptology–EUROCRYPT'93 (Lofthus, 1993), 765 (1993), 55-64.  doi: 10.1007/3-540-48285-7_6.  Google Scholar

[11]

K. Nyberg and L. R. Knudsen, Provable security against differential cryptanalysis, Advances in Cryptology–CRYPTO '92 (Santa Barbara, CA, 1992, 740 (1992), 566-574.  doi: 10.1007/3-540-48071-4_41.  Google Scholar

[12]

T. Tao and V. Vu, Sum-free sets in groups: A survey, J. Comb., 8 (2017), 541-552.  doi: 10.4310/JOC.2017.v8.n3.a7.  Google Scholar

show all references

References:
[1]

L. Babai and V. T. Sós, Sidon sets in groups and induced subgraphs of cayley graphs, European J. Combin., 6 (1985), 101-114.  doi: 10.1016/S0195-6698(85)80001-9.  Google Scholar

[2]

T. Beth and C. Ding, On almost perfect nonlinear permutations, Advances in Cryptology–EUROCRYPT '93 (Lofthus, 1993), 765 (1993), 65-76.  doi: 10.1007/3-540-48285-7_7.  Google Scholar

[3] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, 2021.  doi: 10.1017/9781108606806.  Google Scholar
[4]

C. Carlet and S. Mesnager, On those multiplicative subgroups of ${\mathbb F}_{2^n}^*$ which are Sidon sets and/or sum-free sets, Journal of Algebraic Combinatorics, 2020. Google Scholar

[5]

S. D. Cohen and R. W. Matthews, A class of exceptional polynomials, Trans. Amer. Math. Soc., 345 (1994), 897-909.  doi: 10.1090/S0002-9947-1994-1272675-0.  Google Scholar

[6]

B. Green and I. Z. Ruzsa, Sum-free sets in abelian groups, Isr. J. Math., 147 (2005), 157-188.  doi: 10.1007/BF02785363.  Google Scholar

[7]

X. Hou, Private communication, June 2017. Google Scholar

[8]

X. HouG. L. MullenJ. A. Sellers and J. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl., 15 (2009), 748-773.  doi: 10.1016/j.ffa.2009.06.004.  Google Scholar

[9]

G. Kyureghyan, Special mappings of finite fields, Finite Fields and Their Applications, Radon Ser. Comput. Appl. Math., 11 (2013), 117-144.   Google Scholar

[10]

K. Nyberg, Differentially uniform mappings for cryptography, Advances in Cryptology–EUROCRYPT'93 (Lofthus, 1993), 765 (1993), 55-64.  doi: 10.1007/3-540-48285-7_6.  Google Scholar

[11]

K. Nyberg and L. R. Knudsen, Provable security against differential cryptanalysis, Advances in Cryptology–CRYPTO '92 (Santa Barbara, CA, 1992, 740 (1992), 566-574.  doi: 10.1007/3-540-48071-4_41.  Google Scholar

[12]

T. Tao and V. Vu, Sum-free sets in groups: A survey, J. Comb., 8 (2017), 541-552.  doi: 10.4310/JOC.2017.v8.n3.a7.  Google Scholar

Table 1.  Known APN exponents on $ {\Bbb F}_{2^n} $ up to equivalence and inversion.
Functions Exponents $ d $ Conditions
Gold $ 2^i+1 $ $ \gcd(i,n)=1 $
Kasami $ 2^{2i}-2^i+1 $ $ \gcd(i,n)=1 $
Welch $ 2^t +3 $ $ n=2t+1 $
Niho $ 2^t+2^\frac{t}{2}-1 $, $ t $ even $ n=2t+1 $
$ 2^t+2^\frac{3t+1}{2}-1 $, $ t $ odd
Inverse $ 2^{2t}-1 $ $ n=2t+1 $
Dobbertin $ 2^{4t}+2^{3t}+2^{2t}+2^{t}-1 $ $ n=5t $
Functions Exponents $ d $ Conditions
Gold $ 2^i+1 $ $ \gcd(i,n)=1 $
Kasami $ 2^{2i}-2^i+1 $ $ \gcd(i,n)=1 $
Welch $ 2^t +3 $ $ n=2t+1 $
Niho $ 2^t+2^\frac{t}{2}-1 $, $ t $ even $ n=2t+1 $
$ 2^t+2^\frac{3t+1}{2}-1 $, $ t $ odd
Inverse $ 2^{2t}-1 $ $ n=2t+1 $
Dobbertin $ 2^{4t}+2^{3t}+2^{2t}+2^{t}-1 $ $ n=5t $
Table 2.  $ \gcd(d-2^j,2^n-1) = 1 $ for every $ j = 0,\dots ,n-1 $. Note that for Gold and Kasami exponents, we use the notation $ (n;i) $ to show all the values $ i $ such that $ \gcd(i,n) = 1 $ for a specific $ n $ that result in the APN exponent $ d $ fulfilling the condition $ \gcd(d-2^j,2^n-1) = 1 $ for every $ j = 0,\dots ,n-1 $
Class name Value
$ (n;i) \ such \ that \, i\leq n/2 $
Gold $ (3;1), (5;1,2), (6;1), (7;1,2,3), (9;1,2,4), (11;2,4,5) $
$ (13;1,2,3,4,5,6), (14;1,3,5), (15;1,2,4,7), (17;1,2,3,4,5,6,7,8), $
$ (19;1,2,3,4,5,6,7,8,9), (21;1,2,4,5,8,10), (22;5,7,9), $
$ (23;2,5,7,8,9,10), (25;1,2,3,4,6,7,8,9,11,12), (26;1,3,5,7,9,11) $
$ (27;1,2,4,5,7,8,10,11,13), (29;1,2,3,4,5,6,7,8,9,10,11,12,14) $
$ (31;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) $
Kasami $ (3;1), (5;1,2), (6;1), (7;1,2,3), (9;1,2,4), (11;3,4), (13;1,2,3,4,5,6) $
$ (14;1,3), (15;1,2,4,7), (17;1,2,3,4,5,6,7,8), (19;1,2,3,4,5,6,7,8,9), $
$ (21;1,4,5,8,10), (22;3,7), (23;2,3,6,8,9,11), (25;1,2,3,4,6,7,8,9,11,12), $
$ (26;1,3,5,7,9,11), (27;1,2,4,5,7,8,10,11,13), $
$ (29;1,2,3,5,6,7,8,9,10,11,12,13,14), $
$ (31;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) $
$ n $
Welch $ 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 27, 31 $
Niho $ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 $
Dobbertin $ 5, 15, 25 $
Inverse $ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 $
Class name Value
$ (n;i) \ such \ that \, i\leq n/2 $
Gold $ (3;1), (5;1,2), (6;1), (7;1,2,3), (9;1,2,4), (11;2,4,5) $
$ (13;1,2,3,4,5,6), (14;1,3,5), (15;1,2,4,7), (17;1,2,3,4,5,6,7,8), $
$ (19;1,2,3,4,5,6,7,8,9), (21;1,2,4,5,8,10), (22;5,7,9), $
$ (23;2,5,7,8,9,10), (25;1,2,3,4,6,7,8,9,11,12), (26;1,3,5,7,9,11) $
$ (27;1,2,4,5,7,8,10,11,13), (29;1,2,3,4,5,6,7,8,9,10,11,12,14) $
$ (31;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) $
Kasami $ (3;1), (5;1,2), (6;1), (7;1,2,3), (9;1,2,4), (11;3,4), (13;1,2,3,4,5,6) $
$ (14;1,3), (15;1,2,4,7), (17;1,2,3,4,5,6,7,8), (19;1,2,3,4,5,6,7,8,9), $
$ (21;1,4,5,8,10), (22;3,7), (23;2,3,6,8,9,11), (25;1,2,3,4,6,7,8,9,11,12), $
$ (26;1,3,5,7,9,11), (27;1,2,4,5,7,8,10,11,13), $
$ (29;1,2,3,5,6,7,8,9,10,11,12,13,14), $
$ (31;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) $
$ n $
Welch $ 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 27, 31 $
Niho $ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 $
Dobbertin $ 5, 15, 25 $
Inverse $ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 $
Table 3.  Divisors of $ 2^n-1 $ which are Sidon-sum-free, part I
n Specification Values
3 S/SF/SSF 1
4 S 1, 3, 5
SF 1, 5
SSF 1, 5
5 S/SF/SSF 1
6 S 1, 3, 9
SF 1
SSF 1
7 S/SF/SSF 1
8 S 1, 3, 5, 17
SF 1, 5, 17
SSF 1, 5, 17
9 S/SF/SSF 1
10 S 1, 3, 11, 33
SF 1, 11
SSF 1, 11
11 S 1, 23
SF 1, 23, 89
SSF 1, 23
12 S 1, 3, 5, 9, 13, 39, 65
SF 1, 5, 13, 65
SSF 1, 5, 13, 65
13 S/SF/SSF 1
14 S 1, 3, 43,129
SF 1, 43
SSF 1, 43
15 S 1,151
SF 1,151
SSF 1,151
16 S 1, 3, 5, 17,257
SF 1, 5, 17,257, 1 285
SSF 1, 5, 17,257
17 S/SF/SSF 1
18 S 1, 3, 9, 19, 27, 57,171,513
SF 1, 19
SSF 1, 19
n Specification Values
3 S/SF/SSF 1
4 S 1, 3, 5
SF 1, 5
SSF 1, 5
5 S/SF/SSF 1
6 S 1, 3, 9
SF 1
SSF 1
7 S/SF/SSF 1
8 S 1, 3, 5, 17
SF 1, 5, 17
SSF 1, 5, 17
9 S/SF/SSF 1
10 S 1, 3, 11, 33
SF 1, 11
SSF 1, 11
11 S 1, 23
SF 1, 23, 89
SSF 1, 23
12 S 1, 3, 5, 9, 13, 39, 65
SF 1, 5, 13, 65
SSF 1, 5, 13, 65
13 S/SF/SSF 1
14 S 1, 3, 43,129
SF 1, 43
SSF 1, 43
15 S 1,151
SF 1,151
SSF 1,151
16 S 1, 3, 5, 17,257
SF 1, 5, 17,257, 1 285
SSF 1, 5, 17,257
17 S/SF/SSF 1
18 S 1, 3, 9, 19, 27, 57,171,513
SF 1, 19
SSF 1, 19
Table 4.  Divisors of $ 2^n-1 $ which are Sidon-sum-free, part Ⅱ
n Specification Values
19 S/SF/SSF 1
20 S 1, 3, 5, 11, 25, 33, 41, 55,123,205,275, 1 025
SF 1, 5, 11, 25, 41, 55,205,275,451, 1 025, 2 255,
SSF 1, 5, 11, 25, 41, 55,205,275, 1 025
21 S 1,337
SF 1,337
SSF 1,337
22 S 1, 3, 23, 69,683, 2 049
SF 1, 23, 89,683, 15 709
SSF 1, 23,683
23 S 1, 47
SF 1, 47
SSF 1, 47
24 S 1, 3, 5, 9, 13, 17, 39, 65,221,241,723, 1 205, 4 097
SF 1, 5, 13, 17, 65,221,241, 1 205, 4 097
SSF 1, 5, 13, 17, 65,221,241, 1 205, 4 097
25 S 1,601, 1 801
SF 1,601, 1 801
SSF 1,601, 1801
26 S 1, 3, 2 731, 8 193
SF 1, 2 731
SSF 1, 2 731
27 S/SF/SSF 1
28 S 1, 3, 5, 29, 43, 87,113,129,145,215,339,565, 1 247, 3 277, 16 385
SF 1, 5, 29, 43,113,145,215,565, 1 247, 3 277, 4 859, 6 235, 16 385, 24 295
SSF 1, 5, 29, 43,113,145,215,565, 1 247, 3 277, 16 385
29 S 1,233, 1 103, 2 089
SF 1,233, 1 103, 2 089,256 999
SSF 1,233, 1 103, 2 089
30 S 1, 3, 9, 11, 33, 99,151,331,453,993, 1 359, 1 661, 2 979,
3 641, 4 983, 10 923, 32 769
SF 1, 11,151,331, 1 661, 3 641
SSF 1, 11,151,331, 1 661, 3 641
31 S/SF/SSF 1
n Specification Values
19 S/SF/SSF 1
20 S 1, 3, 5, 11, 25, 33, 41, 55,123,205,275, 1 025
SF 1, 5, 11, 25, 41, 55,205,275,451, 1 025, 2 255,
SSF 1, 5, 11, 25, 41, 55,205,275, 1 025
21 S 1,337
SF 1,337
SSF 1,337
22 S 1, 3, 23, 69,683, 2 049
SF 1, 23, 89,683, 15 709
SSF 1, 23,683
23 S 1, 47
SF 1, 47
SSF 1, 47
24 S 1, 3, 5, 9, 13, 17, 39, 65,221,241,723, 1 205, 4 097
SF 1, 5, 13, 17, 65,221,241, 1 205, 4 097
SSF 1, 5, 13, 17, 65,221,241, 1 205, 4 097
25 S 1,601, 1 801
SF 1,601, 1 801
SSF 1,601, 1801
26 S 1, 3, 2 731, 8 193
SF 1, 2 731
SSF 1, 2 731
27 S/SF/SSF 1
28 S 1, 3, 5, 29, 43, 87,113,129,145,215,339,565, 1 247, 3 277, 16 385
SF 1, 5, 29, 43,113,145,215,565, 1 247, 3 277, 4 859, 6 235, 16 385, 24 295
SSF 1, 5, 29, 43,113,145,215,565, 1 247, 3 277, 16 385
29 S 1,233, 1 103, 2 089
SF 1,233, 1 103, 2 089,256 999
SSF 1,233, 1 103, 2 089
30 S 1, 3, 9, 11, 33, 99,151,331,453,993, 1 359, 1 661, 2 979,
3 641, 4 983, 10 923, 32 769
SF 1, 11,151,331, 1 661, 3 641
SSF 1, 11,151,331, 1 661, 3 641
31 S/SF/SSF 1
Table 5.  $ 32 \leq n \leq 48 $. Number of possibly new APN exponents, the total number of values to consider for a certain $ n $ equals $ 2^n-2 $. $ Cyclotomic \ rep. $ denotes the number of possible APN exponents after keeping only a single representative of a cyclotomic class. $ Subfield $ denotes the number of possible APN exponents after removing values $ d $ such that $ \gcd(d,2^r-1) $ is not an APN exponent in $ \Bbb F_{2^r} $. $ SSF $ denotes the number of possible APN exponents after removing values $ d $ such that (1) $ \gcd(d-2^j, 2^n-1) $ are not SSF values and (2) there exists a divisor $ \lambda $ of $ 2^n-1 $ such that $ {\lambda+1\choose 2}> 2^n-1 $ and there exists $ j = 1,\dots ,n-1 $ such that $ \lambda $ divides $ d-2^j $
n $ \gcd(d, 2^n-1) $ Not known APN Cyclotomic rep. Subfield SSF
32 1 073 741 824 1 073 741 344 33 554 417 229 361 229 328
33 6 963 536 448 6 963 535 029 105 508 114 6 893 976 6 893 596
34 5 726 448 300 5 726 447 790 168 424 935 764 560 764 560
35 32 524 632 000 32 524 630 145 464 637 581 236620975 236 620 012
36 8 707 129 344 8 707 128 948 241 864 693 58 309 58 279
37 136 822 635 072 136 822 632 297 1 848 954 492 1 848 954 492 1 848 954 380
38 91 625 269 932 91 625 269 286 2 411 191 297 3 407 842 3 407 842
39 465 193 834 560 465 193 832 571 5 964 023 502 127 800 480 127 759 412
40 236 851 200 000 236 851 199 360 5 921 279 984 1 480 304 1 480 210
41 2 198 858 730 832 2 198 858 727 429 26 815 350 336 26 815 350 336 26 815 343 652
42 809 240 108 544 809 240 108 082 19 267 621 621 140 857 140 849
43 8 774 777 333 880 8 774 777 330 139 102 032 294 540 102 032 294 540 102 032 289 465
44 4 417 116 143 616 4 417 116 142 780 100 389 003 245 15 054 317 15 054 285
45 28 548 223 200 000 28 548 223 197 615 317 202 480 005 2 004 543 425 2 004 537 282
46 22 957 042 116 160 22 957 042 115 194 499 066 132 939 65 710 726 65 710 708
47 9 339 802 874 699 9 339 802 872 926 1 449 575 966 170 1 449 575 966 170 1 449 575 962 833
48 36 528 696 852 480 36 528 696 851 760 761 014 517 745 1 096 689 1 096 684
n $ \gcd(d, 2^n-1) $ Not known APN Cyclotomic rep. Subfield SSF
32 1 073 741 824 1 073 741 344 33 554 417 229 361 229 328
33 6 963 536 448 6 963 535 029 105 508 114 6 893 976 6 893 596
34 5 726 448 300 5 726 447 790 168 424 935 764 560 764 560
35 32 524 632 000 32 524 630 145 464 637 581 236620975 236 620 012
36 8 707 129 344 8 707 128 948 241 864 693 58 309 58 279
37 136 822 635 072 136 822 632 297 1 848 954 492 1 848 954 492 1 848 954 380
38 91 625 269 932 91 625 269 286 2 411 191 297 3 407 842 3 407 842
39 465 193 834 560 465 193 832 571 5 964 023 502 127 800 480 127 759 412
40 236 851 200 000 236 851 199 360 5 921 279 984 1 480 304 1 480 210
41 2 198 858 730 832 2 198 858 727 429 26 815 350 336 26 815 350 336 26 815 343 652
42 809 240 108 544 809 240 108 082 19 267 621 621 140 857 140 849
43 8 774 777 333 880 8 774 777 330 139 102 032 294 540 102 032 294 540 102 032 289 465
44 4 417 116 143 616 4 417 116 142 780 100 389 003 245 15 054 317 15 054 285
45 28 548 223 200 000 28 548 223 197 615 317 202 480 005 2 004 543 425 2 004 537 282
46 22 957 042 116 160 22 957 042 115 194 499 066 132 939 65 710 726 65 710 708
47 9 339 802 874 699 9 339 802 872 926 1 449 575 966 170 1 449 575 966 170 1 449 575 962 833
48 36 528 696 852 480 36 528 696 851 760 761 014 517 745 1 096 689 1 096 684
Table 6.  $ 3 \leq n \leq 31 $. Number of possibly new APN exponents, the total number of values to consider for a certain $ n $ equals $ 2^n-2 $ as we do not need to consider the values 0 and $ 2^n-1 $. $ Cyclotomic \ rep. $ denotes the number of possible APN exponents after keeping only a single representative of a cyclotomic class. $ Subfield $ denotes the number of possible APN exponents after removing values $ d $ such that $ \gcd(d,2^r-1) $ is not an APN exponent in $ \Bbb F_{2^r} $. $ SSF $ denotes the number of possible APN exponents after removing values $ d $ such that (1) $ \gcd(d-2^j, 2^n-1) $ are not SSF values and (2) there exists a divisor $ \lambda $ of $ 2^n-1 $ such that $ {\lambda+1\choose 2}> 2^n-1 $ and there exists $ j = 1,\dots ,n-1 $ such that $ \lambda $ divides $ d-2^j $
n $ \gcd(d, 2^n-1) $ Not known APN Cyclotomic rep. Subfield SSF
3 6 3 1 1 0
4 4 0 0 0 0
5 30 5 1 1 0
6 12 6 1 0 0
7 126 49 4 4 3
8 64 40 5 5 4
9 432 315 19 6 4
10 300 260 26 21 21
11 1 936 1 683 78 78 66
12 576 540 45 21 21
13 8 190 7 839 302 302 301
14 5 292 5 222 373 226 226
15 27 000 26 685 893 365 365
16 16 384 16 272 1 017 377 370
17 131 070 130 475 3 838 3 838 3 837
18 46 656 46 566 2 587 697 697
19 524 286 523 545 13 778 13 778 13 777
20 240 000 239 840 11 992 1 592 1 512
21 1 778 112 1 777 545 42 326 12 923 12 923
22 1 320 352 1 320 154 60 007 7 834 7 824
23 8 210 080 8 208 999 178 458 178 458 178 434
24 2 211 840 2 211 672 92 153 2 153 2 135
25 32 400 000 32 398 875 647 981 539 979 539 966
26 22 358 700 22 358 414 859 939 36 844 36 844
27 113 467 392 113 466 339 2 101 232 569 069 569 010
28 66 382 848 66 382 540 2 370 805 31 349 31 127
29 533 826 432 533 824 721 9 203 878 9 203 878 9 202 166
30 178 200 000 178 199 760 5 939 992 11 212 11 212
31 2 147 483 646 2 147 481 693 34 636 802 34 636 802 34 636 801
n $ \gcd(d, 2^n-1) $ Not known APN Cyclotomic rep. Subfield SSF
3 6 3 1 1 0
4 4 0 0 0 0
5 30 5 1 1 0
6 12 6 1 0 0
7 126 49 4 4 3
8 64 40 5 5 4
9 432 315 19 6 4
10 300 260 26 21 21
11 1 936 1 683 78 78 66
12 576 540 45 21 21
13 8 190 7 839 302 302 301
14 5 292 5 222 373 226 226
15 27 000 26 685 893 365 365
16 16 384 16 272 1 017 377 370
17 131 070 130 475 3 838 3 838 3 837
18 46 656 46 566 2 587 697 697
19 524 286 523 545 13 778 13 778 13 777
20 240 000 239 840 11 992 1 592 1 512
21 1 778 112 1 777 545 42 326 12 923 12 923
22 1 320 352 1 320 154 60 007 7 834 7 824
23 8 210 080 8 208 999 178 458 178 458 178 434
24 2 211 840 2 211 672 92 153 2 153 2 135
25 32 400 000 32 398 875 647 981 539 979 539 966
26 22 358 700 22 358 414 859 939 36 844 36 844
27 113 467 392 113 466 339 2 101 232 569 069 569 010
28 66 382 848 66 382 540 2 370 805 31 349 31 127
29 533 826 432 533 824 721 9 203 878 9 203 878 9 202 166
30 178 200 000 178 199 760 5 939 992 11 212 11 212
31 2 147 483 646 2 147 481 693 34 636 802 34 636 802 34 636 801
[1]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[2]

Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59

[3]

Marko Kostić. Almost periodic type functions and densities. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021008

[4]

Yuk L. Yung, Cameron Taketa, Ross Cheung, Run-Lie Shia. Infinite sum of the product of exponential and logarithmic functions, its analytic continuation, and application. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 229-248. doi: 10.3934/dcdsb.2010.13.229

[5]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[6]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[7]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[8]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[9]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

[10]

Lassi Roininen, Markku S. Lehtinen. Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions. Inverse Problems & Imaging, 2013, 7 (2) : 649-661. doi: 10.3934/ipi.2013.7.649

[11]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[12]

Chao Wang, Ravi P Agarwal. Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 781-798. doi: 10.3934/dcdsb.2019267

[13]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[14]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[15]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[16]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[17]

S.M. Booker, P.D. Smith, P. Brennan, R. Bullock. In-band disruption of a nonlinear circuit using optimal forcing functions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 221-242. doi: 10.3934/dcdsb.2002.2.221

[18]

SelÇuk Kavut, Seher Tutdere. Highly nonlinear (vectorial) Boolean functions that are symmetric under some permutations. Advances in Mathematics of Communications, 2020, 14 (1) : 127-136. doi: 10.3934/amc.2020010

[19]

H.Thomas Banks, Danielle Robbins, Karyn L. Sutton. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1301-1333. doi: 10.3934/mbe.2013.10.1301

[20]

Tai-Chia Lin, Tsung-Fang Wu. Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2165-2187. doi: 10.3934/dcds.2020110

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (68)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]